Past Paper Questions: Roots of Polynomial Equations

1 The equation

$$8x^3 + 12x^2 + 4x - 1 = 0$$

has roots α , β , γ . Show that the equation with roots $2\alpha + 1$, $2\beta + 1$, $2\gamma + 1$ is

$$y^3 - y - 1 = 0. ag{3}$$

The sum $(2\alpha + 1)^n + (2\beta + 1)^n + (2\gamma + 1)^n$ is denoted by S_n . Find the values of S_3 and S_{-2} . [5]

2 The roots of the equation

$$x^3 - x - 1 = 0$$

are α , β , γ , and

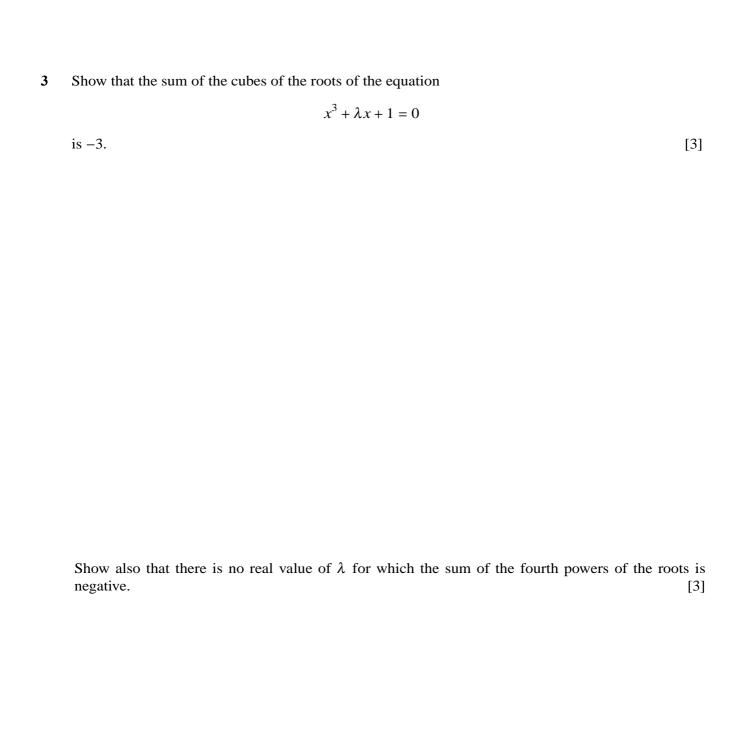
$$S_n = \alpha^n + \beta^n + \gamma^n.$$

(i) Use the relation $y = x^2$ to show that α^2 , β^2 , γ^2 are the roots of the equation

$$y^3 - 2y^2 + y - 1 = 0.$$
 [3]

(ii) Hence, or otherwise, find the value of S_4 .

[2]



4	Obtain the sum of the squares of the roots of the equation		
	$x^4 + 3x^3 + 5x^2 + 12x + 4 = 0.$	[2]	

Deduce that this equation does not have more than 2 real roots. [3]

Show that, in fact, the equation has exactly 2 real roots in the interval $-3 < x < 0$
--

Denoting these roots by α and β , and the other 2 roots by γ and δ , show that $|\gamma| = |\delta| = \frac{2}{\sqrt{(\alpha\beta)}}$. [4]

$$x^3 + 3x - 1 = 0$$

has roots α , β , γ . Use the substitution $y = x^3$ to show that the equation whose roots are α^3 , β^3 , γ^3 is

$$y^3 - 3y^2 + 30y - 1 = 0.$$
 [3]

Find the value of $\alpha^9 + \beta^9 + \gamma^9$.

[5]

$$x^3 + x - 1 = 0$$

has roots α , β , γ . Show that the equation with roots α^3 , β^3 , γ^3 is

$$y^3 - 3y^2 + 4y - 1 = 0.$$
 [4]

$$x^4 - x^3 - 1 = 0$$

has roots α , β , γ , δ . By using the substitution $y = x^3$, or by any other method, find the exact value of $\alpha^6 + \beta^6 + \gamma^6 + \delta^6$. [5]

$$x^3 + x - 1 = 0$$

has roots α , β , γ . Use the relation $x = \sqrt{y}$ to show that the equation

$$y^3 + 2y^2 + y - 1 = 0$$

has roots
$$\alpha^2$$
, β^2 , γ^2 . [2]

Let $S_n = \alpha^n + \beta^n + \gamma^n$.

(i) Write down the value of
$$S_2$$
 and show that $S_4 = 2$. [3]

(ii) Find the values of S_6 and S_8 .

[4]

$$x^4 + x^3 + cx^2 + 4x - 2 = 0,$$

where c is a constant, has roots α , β , γ , δ .

(i) Use the substitution
$$y = \frac{1}{x}$$
 to find an equation which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$, $\frac{1}{\delta}$.

(ii) Find, in terms of c, the values of
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2$$
 and $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$. [3]

(iii) Hence find

$$\left(\alpha - \frac{1}{\alpha}\right)^2 + \left(\beta - \frac{1}{\beta}\right)^2 + \left(\gamma - \frac{1}{\gamma}\right)^2 + \left(\delta - \frac{1}{\delta}\right)^2$$

in terms of c.

[2]

(iv) Deduce that when c = -3 the roots of the given equation are not all real.

[3]

10 The roots of the equation

$$x^3 + px^2 + qx + r = 0$$

are
$$\frac{\beta}{k}$$
, β , $k\beta$, where p , q , r , k and β are non-zero real constants. Show that $\beta = -\frac{q}{p}$. [4]

Deduce that $rp^3 = q^3$. [2]

11	Find a cubic equation	with roots α , β and γ , given that
----	-----------------------	---

$$\alpha + \beta + \gamma = -6$$
, $\alpha^2 + \beta^2 + \gamma^2 = 38$, $\alpha\beta\gamma = 30$. [3]

Hence find the numerical values of the roots.

[3]

12 The roots of the cubic equation $x^3 - 7x^2 + 2x - 3 = 0$ are α , β , γ . Find the values of

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$
, [2]

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$
. [3]

- 13 The cubic equation $x^3 x^2 3x 10 = 0$ has roots α , β , γ .
 - (i) Let $u = -\alpha + \beta + \gamma$. Show that $u + 2\alpha = 1$, and hence find a cubic equation having roots $-\alpha + \beta + \gamma$, $\alpha \beta + \gamma$, $\alpha + \beta \gamma$. [5]

(ii) State the value of $\alpha\beta\gamma$ and hence find a cubic equation having roots $\frac{1}{\beta\gamma}$, $\frac{1}{\gamma\alpha}$, $\frac{1}{\alpha\beta}$.

[5]

14 The cubic equation $x^3 - 2x^2 - 3x + 4 = 0$ has roots α , β , γ . Given that $c = \alpha + \beta + \gamma$, state the value of c.

Use the substitution y = c - x to find a cubic equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$. [3]

Find a cubic equation whose roots are
$$\frac{1}{\alpha + \beta}$$
, $\frac{1}{\beta + \gamma}$, $\frac{1}{\gamma + \alpha}$. [2]

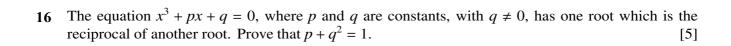
Hence evaluate
$$\frac{1}{(\alpha+\beta)^2} + \frac{1}{(\beta+\gamma)^2} + \frac{1}{(\gamma+\alpha)^2}$$
. [2]

15 The roots of the equation $x^4 - 4x^2 + 3x - 2 = 0$ are α , β , γ and δ ; the sum $\alpha^n + \beta^n + \gamma^n + \delta^n$ is denoted by S_n . By using the relation $y = x^2$, or otherwise, show that α^2 , β^2 , γ^2 and δ^2 are the roots of the equation

$$y^4 - 8y^3 + 12y^2 + 7y + 4 = 0.$$
 [3]

State the value of S_2 and hence show that

$$S_8 = 8S_6 - 12S_4 - 72. ag{3}$$

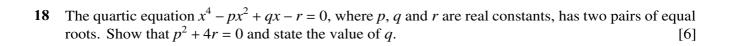


(i)
$$\frac{1}{(\alpha\beta)(\beta\gamma)(\gamma\alpha)}$$
,

(ii)
$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$$
,

(iii)
$$\frac{1}{\alpha^2\beta\gamma} + \frac{1}{\alpha\beta^2\gamma} + \frac{1}{\alpha\beta\gamma^2}$$
.

Deduce a cubic equation, with integer coefficients, having roots
$$\frac{1}{\alpha\beta}$$
, $\frac{1}{\beta\gamma}$ and $\frac{1}{\gamma\alpha}$. [2]



19 The roots of the cubic equation $2x^3 + x^2 - 7 = 0$ are α , β and γ . Using the substitution $y = 1 + \frac{1}{x}$, or otherwise, find the cubic equation whose roots are $1 + \frac{1}{\alpha}$, $1 + \frac{1}{\beta}$ and $1 + \frac{1}{\gamma}$, giving your answer in the form $ay^3 + by^2 + cy + d = 0$, where a, b, c and d are constants to be found. [4]

20 The cubic equation

$$z^3 - z^2 - z - 5 = 0$$

has roots α , β and γ . Show that the value of $\alpha^3 + \beta^3 + \gamma^3$ is 19. [4]

Find the value of
$$\alpha^4 + \beta^4 + \gamma^4$$
. [2]

Show that the cubic equation with roots $\frac{\alpha-1}{\alpha}$, $\frac{\beta-1}{\beta}$ and $\frac{\gamma-1}{\gamma}$ may be found using the substitution $z=\frac{1}{1-x}$, and find this equation, giving your answer in the form $px^3+qx^2+rx+s=0$, where p,q,r and s are constants to be determined. [4]

21 By finding a cubic equation whose roots are α , β and γ , solve the set of simultaneous equations

$$\alpha + \beta + \gamma = -1,$$

$$\alpha^2 + \beta^2 + \gamma^2 = 29,$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -1.$$
[8]

- 22 The roots of the cubic equation $x^3 + 2x^2 3 = 0$ are α , β and γ .
 - (i) By using the substitution $y = \frac{1}{x^2}$, find the cubic equation with roots $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\gamma^2}$. [3]

(ii) Hence find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$. [1]

(iii) Find also the value of $\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2}$. [1]

23 It is given that the equation

$$x^3 - 21x^2 + kx - 216 = 0,$$

where k is a constant, has real roots a, ar and ar^{-1} .

(i) Find the numerical values of the roots.

[6]

(ii) Deduce the value of k.

[2]

24 The equation

$$9x^3 - 9x^2 + x - 2 = 0$$

has roots α , β , γ .

(i) Use the substitution y = 3x - 1 to show that $3\alpha - 1$, $3\beta - 1$, $3\gamma - 1$ are the roots of the equation

$$y^3 - 2y - 7 = 0. ag{2}$$

[2]

The sum $(3\alpha - 1)^n + (3\beta - 1)^n + (3\gamma - 1)^n$ is denoted by S_n .

(ii) Find the value of
$$S_3$$
.

(iii) Find the value of S_{-2} .

[4]

25 The equation

$$x^3 - x + 1 = 0$$

has roots α , β , γ .

(i) Use the relation $x = y^{\frac{1}{3}}$ to show that the equation

$$y^3 + 3y^2 + 2y + 1 = 0$$

has roots α^3 , β^3 , γ^3 . Hence write down the value of $\alpha^3 + \beta^3 + \gamma^3$.

[3]

Let $S_n = \alpha^n + \beta^n + \gamma^n$.

(ii) Find the value of S_{-3} . [2]

(iii) Show that $S_6 = 5$ and find the value of S_9 . [4]

26 A cubic equation $x^3 + bx^2 + cx + d = 0$ has real roots α , β and γ such that

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -\frac{5}{12},$$
$$\alpha\beta\gamma = -12,$$
$$\alpha^3 + \beta^3 + \gamma^3 = 90.$$

(i) Find the values of c and d.

(ii) Express $\alpha^2 + \beta^2 + \gamma^2$ in terms of b.

[3]

(iii) Show that $b^3 - 15b + 126 = 0$.

(iv) Given that $3 + i\sqrt{12}$ is a root of $y^3 - 15y + 126 = 0$, deduce the value of b. [2]

27 Find the sum of the squares of the roots of the equation

$$x^3 + x + 12 = 0,$$

and deduce that only one of the roots is real.

[4]

The real root of the equation is denoted by α . Prove that $-3 < \alpha < -2$, and hence prove that the modulus of each of the other roots lies between 2 and $\sqrt{6}$.

28 Given that

$$\alpha + \beta + \gamma = 0$$
, $\alpha^2 + \beta^2 + \gamma^2 = 14$, $\alpha^3 + \beta^3 + \gamma^3 = -18$,

find a cubic equation whose roots are α , β , γ . [4]

Hence find possible values for α , β , γ .

[2]

29 In the equation

$$x^3 + ax^2 + bx + c = 0,$$

the coefficients a, b and c are real. It is given that all the roots are real and greater than 1.

(i) Prove that a < -3. [1]

(ii) By considering the sum of the squares of the roots, prove that $a^2 > 2b + 3$. [2]

(iii) By considering the sum of the cubes of the roots, prove that $a^3 < -9b - 3c - 3$.

[4]

30 The roots of the equation

$$x^3 + x + 1 = 0$$

are α , β , γ . Show that the equation whose roots are

$$\frac{4\alpha+1}{\alpha+1}$$
, $\frac{4\beta+1}{\beta+1}$, $\frac{4\gamma+1}{\gamma+1}$

is of the form

$$y^3 + py + q = 0,$$

where the numbers p and q are to be determined.

[5]

Hence find the value of

$$\left(\frac{4\alpha+1}{\alpha+1}\right)^n+\left(\frac{4\beta+1}{\beta+1}\right)^n+\left(\frac{4\gamma+1}{\gamma+1}\right)^n,$$

for n = 2 and for n = 3. [4]

31 The roots of the equation

$$x^3 - 8x^2 + 5 = 0$$

are α , β , γ . Show that

$$\alpha^2 = \frac{5}{\beta + \gamma}.$$
 [4]

9231/01/O/N/07

It is given that the roots are all real. Without reference to a graph, show that one of the roots is negative

[3]

and the other two roots are positive.

32 The roots of the equation

$$x^4 - 5x^2 + 2x - 1 = 0$$

are $\alpha, \beta, \gamma, \delta$. Let $S_n = \alpha^n + \beta^n + \gamma^n + \delta^n$.

(i) Show that

$$S_{n+4} - 5S_{n+2} + 2S_{n+1} - S_n = 0.$$
 [2]

(ii) Find the values of
$$S_2$$
 and S_4 .

[3]

(iii)	Find th	he value	of S_3 ar	d hence	find t	he value	of S_6 .
-------	---------	----------	-------------	---------	--------	----------	------------

[6]

$$\alpha^{2}(\beta^{4} + \gamma^{4} + \delta^{4}) + \beta^{2}(\gamma^{4} + \delta^{4} + \alpha^{4}) + \gamma^{2}(\delta^{4} + \alpha^{4} + \beta^{4}) + \delta^{2}(\alpha^{4} + \beta^{4} + \gamma^{4}).$$

[3]

33 The equation

$$x^3 + 5x + 3 = 0$$

has roots α , β , γ . Use the substitution $x = -\frac{3}{y}$ to find a cubic equation in y and show that the roots of this equation are $\beta\gamma$, $\gamma\alpha$, $\alpha\beta$. [4]

Find the exact values of $\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2$ and $\beta^3 \gamma^3 + \gamma^3 \alpha^3 + \alpha^3 \beta^3$. [5]

34 The roots of the equation $x^3 + 4x - 1 = 0$ are α , β and γ . Use the substitution $y = \frac{1}{1+x}$ to show that the equation $6y^3 - 7y^2 + 3y - 1 = 0$ has roots $\frac{1}{\alpha+1}$, $\frac{1}{\beta+1}$ and $\frac{1}{\gamma+1}$. [2]

For the cases n = 1 and n = 2, find the value of

$$\frac{1}{(\alpha+1)^n} + \frac{1}{(\beta+1)^n} + \frac{1}{(\gamma+1)^n}.$$
 [2]

Deduce the value of
$$\frac{1}{(\alpha+1)^3} + \frac{1}{(\beta+1)^3} + \frac{1}{(\gamma+1)^3}$$
. [2]

Hence show that
$$\frac{(\beta+1)(\gamma+1)}{(\alpha+1)^2} + \frac{(\gamma+1)(\alpha+1)}{(\beta+1)^2} + \frac{(\alpha+1)(\beta+1)}{(\gamma+1)^2} = \frac{73}{36}$$
. [3]

35 The equation $x^3 + px + q = 0$ has a repeated root. Prove that $4p^3 + 27q^2 = 0$.

[5]

36 The equation

$$x^3 + 5x^2 - 3x - 15 = 0$$

has roots α , β , γ . Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

[3]

Hence show that the matrix $\begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix}$ is singular. [4]

37 The roots of the equation $x^4 - 3x^2 + 5x - 2 = 0$ are α , β , γ , δ , and $\alpha^n + \beta^n + \gamma^n + \delta^n$ is denoted by S_n . Show that

$$S_{n+4} - 3S_{n+2} + 5S_{n+1} - 2S_n = 0.$$
 [2]

Find the values of

(i)
$$S_2$$
 and S_4 , [3]

(ii) S_3 and S_5 . [6]

Hence find the value of

$$\alpha^{2}(\beta^{3} + \gamma^{3} + \delta^{3}) + \beta^{2}(\gamma^{3} + \delta^{3} + \alpha^{3}) + \gamma^{2}(\delta^{3} + \alpha^{3} + \beta^{3}) + \delta^{2}(\alpha^{3} + \beta^{3} + \gamma^{3}).$$
 [3]

38 A cubic equation has roots α , β and γ such that

$$\alpha + \beta + \gamma = 4,$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = 14,$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = 34.$$

Find the value of $\alpha\beta + \beta\gamma + \gamma\alpha$.

[2]

Show that the cubic equation is

$$x^3 - 4x^2 + x + 6 = 0,$$

and solve this equation.

[6]

39 The cubic equation $x^3 - px - q = 0$, where p and q are constants, has roots α , β , γ . Show that (i) $\alpha^2 + \beta^2 + \gamma^2 = 2p$,

(ii)
$$\alpha^3 + \beta^3 + \gamma^3 = 3q$$
, [2]

(iii)
$$6(\alpha^5 + \beta^5 + \gamma^5) = 5(\alpha^3 + \beta^3 + \gamma^3)(\alpha^2 + \beta^2 + \gamma^2).$$
 [3]

40 The equation

$$8x^3 + 36x^2 + kx - 21 = 0,$$

where k is a constant, has roots a - d, a, a + d. Find the numerical values of the roots and determine the value of k. [8]

The roots of the quartic equation $x^4 + 4x^3 + 2x^2 - 4x + 1 = 0$ are α , β , γ and δ . Find the values of

(i) $\alpha + \beta + \gamma + \delta$,

(ii)
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2$$
, [2]

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta},$$
 [2]

(iv)
$$\frac{\alpha}{\beta\gamma\delta} + \frac{\beta}{\alpha\gamma\delta} + \frac{\gamma}{\alpha\beta\delta} + \frac{\delta}{\alpha\beta\gamma}$$
. [2]

Using the substitution y = x + 1, find a quartic equation in y. Solve this quartic equation and hence find the roots of the equation $x^4 + 4x^3 + 2x^2 - 4x + 1 = 0$. [7]

42 The cubic equation $x^3 + px^2 + qx + r = 0$, where p, q and r are integers, has roots α , β and γ , such that $\alpha + \beta + \gamma = 15$, $\alpha^2 + \beta^2 + \gamma^2 = 83$.

[3]

Write down the value of p and find the value of q.

Given that α , β and γ are all real and that $\alpha\beta + \alpha\gamma = 36$, find α and hence find the value of r .	[5]
--	-----

43 Find the cubic equation with roots α , β and γ such that

$$\alpha + \beta + \gamma = 3,$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = 1,$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -30,$$

giving your answer in the form $x^3 + px^2 + qx + r = 0$, where p, q and r are integers to be found. [6]

- 44 The cubic equation $2x^3 3x^2 + 4x 10 = 0$ has roots α , β and γ .
 - (i) Find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$.

[4]

(ii) Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.

[4]

45 The roots of the equation

$$x^3 + px^2 + qx + r = 0$$

are α , 2α , 4α , where p, q, r and α are non-zero real constants.

(i) Show that

$$2p\alpha + q = 0. ag{4}$$

(ii) Show that

$$p^3r - q^3 = 0. [2]$$

46 The roots of the cubic equation

$$x^3 - 5x^2 + 13x - 4 = 0$$

are α , β , γ .

(i) Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

[3]

(ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.

[2]

- 47 The equation $x^3 + 2x^2 + x + 7 = 0$ has roots α , β , γ .
 - (i) Use the relation $x^2 = -7y$ to show that the equation

$$49y^3 + 14y^2 - 27y + 7 = 0$$

has roots
$$\frac{\alpha}{\beta\gamma}$$
, $\frac{\beta}{\gamma\alpha}$, $\frac{\gamma}{\alpha\beta}$. [4]

(ii) Show that
$$\frac{\alpha^2}{\beta^2 \gamma^2} + \frac{\beta^2}{\gamma^2 \alpha^2} + \frac{\gamma^2}{\alpha^2 \beta^2} = \frac{58}{49}.$$
 [3]

(iii) Find the exact value of
$$\frac{\alpha^3}{\beta^3 \gamma^3} + \frac{\beta^3}{\gamma^3 \alpha^3} + \frac{\gamma^3}{\alpha^3 \beta^3}$$
. [2]

The cubic equation $x^3 + bx^2 + cx + d = 0$, where b, c and d are constants, has roots α , β , γ . It is given that $\alpha\beta\gamma = -1$.

(a) State the value of d. [1]

(b) Find a cubic equation, with coefficients in terms of b and c, whose roots are $\alpha + 1$, $\beta + 1$, $\gamma + 1$. [3]

(c) Given also that $\gamma + 1 = -\alpha - 1$, deduce that (c - 2b + 3)(b - 3) = b - c. [4]

- 49 The cubic equation $7x^3+3x^2+5x+1=0$ has roots α , β , γ .
 - (a) Find a cubic equation whose roots are α^{-1} , β^{-1} , γ^{-1} .

[3]

(b) Find the value of $\alpha^{-2} + \beta^{-2} + \gamma^{-2}$. [2]

(c) Find the value of $\alpha^{-3} + \beta^{-3} + \gamma^{-3}$. [2]

- 50 The cubic equation $6x^3+px^2-3x-5=0$, where p is a constant, has roots α , β , γ .
 - (a) Find a cubic equation whose roots are α^2 , β^2 , γ^2 .

[3]

- **(b)** It is given that $\alpha^2 + \beta^2 + \gamma^2 = 2(\alpha + \beta + \gamma)$.
 - (i) Find the value of p.

(ii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.

[2]

- 51 The cubic equation $x^3 + cx + 1 = 0$, where c is a constant, has roots α , β , γ .
 - (a) Find a cubic equation whose roots are α^3 , β^3 , γ^3 . [3]

(b) Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$. [3]

(c) Find the real value of
$$c$$
 for which the matrix $\begin{pmatrix} 1 & \alpha^3 & \beta^3 \\ \alpha^3 & 1 & \gamma^3 \\ \beta^3 & \gamma^3 & 1 \end{pmatrix}$ is singular.

[5]

- 52 The equation $x^4 2x^3 1 = 0$ has roots α , β , γ , δ .
 - (a) Find a quartic equation whose roots are α^3 , β^3 , γ^3 , δ^3 and state the value of $\alpha^3 + \beta^3 + \gamma^3 + \delta^3$. [4]

(b) Find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} + \frac{1}{\delta^3}$. [3]

(c) Find the value of
$$\alpha^4 + \beta^4 + \gamma^4 + \delta^4$$
. [2]

- 53 The cubic equation $2x^3 4x^2 + 3 = 0$ has roots α , β , γ . Let $S_n = \alpha^n + \beta^n + \gamma^n$.
 - (a) State the value of S_1 and find the value of S_2 . [3]

(b) (i) Express S_{n+3} in terms of S_{n+2} and S_n . [1]

(ii) Hence, or otherwise, find the value of S_4 . [2]

(c) Use the substitution $y = S_1 - x$, where S_1 is the numerical value found in part (a), to find and simplify an equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$. [3]

(d) Find the value of
$$\frac{1}{\alpha + \beta} + \frac{1}{\beta + \gamma} + \frac{1}{\gamma + \alpha}$$
. [2]

54 It is given that

$$\alpha + \beta + \gamma = 3$$
, $\alpha^{2} + \beta^{2} + \gamma^{2} = 5$, $\alpha^{3} + \beta^{3} + \gamma^{3} = 6$.

The cubic equation $x^3 + bx^2 + cx + d = 0$ has roots α , β , γ .

Find the values of b, c and d. [6]

55 The cubic equation $x^3 + 2x^2 + 3x + 3 = 0$ has roots α , β , γ .

(a) Find the value of
$$\alpha^2 + \beta^2 + \gamma^2$$
. [2]

(b) Show that
$$\alpha^3 + \beta^3 + \gamma^3 = 1$$
. [2]

56 The cubic equation $2x^3 + 5x^2 - 6 = 0$ has roots α , β , γ .

(a) Find a cubic equation whose roots are
$$\frac{1}{\alpha^3}$$
, $\frac{1}{\beta^3}$, $\frac{1}{\gamma^3}$.

[3]

(b) Find the value of
$$\frac{1}{\alpha^6} + \frac{1}{\beta^6} + \frac{1}{\gamma^6}$$
. [3]

(c) Find also the value of
$$\frac{1}{\alpha^9} + \frac{1}{\beta^9} + \frac{1}{\gamma^9}$$
. [2]

57 The cubic equation $x^3 + 5x^2 + 10x - 2 = 0$ has roots α , β , γ .

Find the value of
$$\alpha^2 + \beta^2 + \gamma^2$$
. [3]

58 The cubic equation $x^3 + bx^2 + d = 0$ has roots α , β , γ , where $\alpha = \beta$ and $d \neq 0$.

(a) Show that
$$4b^3 + 27d = 0$$
.

[5]

(b) Given that $2\alpha^2 + \gamma^2 = 3b$, find the values of b and d.

[3]

- 59 The equation $x^4 + 3x^2 + 2x + 6 = 0$ has roots $\alpha, \beta, \gamma, \delta$.
 - (a) Find a quartic equation whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$, $\frac{1}{\gamma^2}$, $\frac{1}{\delta^2}$ and state the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$.

[4

(b) Find the value of
$$\beta^2 \gamma^2 \delta^2 + \alpha^2 \gamma^2 \delta^2 + \alpha^2 \beta^2 \delta^2 + \alpha^2 \beta^2 \gamma^2$$
. [3]

(c) Find the value of
$$\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$$
. [2]

- 60 The equation $x^4 x^2 + 2x + 5 = 0$ has roots $\alpha, \beta, \gamma, \delta$.
 - (a) Find a quartic equation whose roots are α^2 , β^2 , γ^2 , δ^2 and state the value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$. [4]

(b) Find the value of
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$$
. [3]

(c) Find the value of
$$\alpha^4 + \beta^4 + \gamma^4 + \delta^4$$
. [2]