Name:			

Date	
17410	5

_____ Class: _____

Past Paper Questions: Matrices I

1 Let
$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$
.

(a) The transformation in the x-y plane represented by A^{-1} transforms a triangle of area 30 cm² into a triangle of area $d \, \text{cm}^2$.

Find the value of *d*.

[3]

(b) Prove by mathematical induction that, for all positive integers n,

$$\mathbf{A}^n = \begin{pmatrix} 2^n & 0 \\ 2^n - 1 & 1 \end{pmatrix}. \tag{5}$$

(c) The line y = 2x is invariant under the transformation in the *x-y* plane represented by $\mathbf{A}^n \mathbf{B}$, where $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 33 & 0 \end{pmatrix}$.

Find the value of n. [5]

2 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} k & 0 & 2 \\ 0 & -1 & -1 \\ 1 & 1 & -k \end{pmatrix},$$

where k is a real constant.

(a) Show that A is non-singular.

[3]

The matrices **B** and **C** are given by

$$\mathbf{B} = \begin{pmatrix} 0 & -3 \\ -1 & 3 \\ 0 & 0 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} -3 & -1 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

It is given that $\mathbf{CAB} = \begin{pmatrix} -2 & -\frac{3}{2} \\ -1 & -\frac{3}{2} \end{pmatrix}$.

(b) Find the value of k.

[3]

(c) Find the equations of the invariant lines, through the origin, of the transformation in the *x-y* plane represented by **CAB**. [5]

The anti	matrix M represents the sequence of two transformations in the x - y plane given by a rotation of clockwise about the origin followed by a one-way stretch in the x -direction, scale factor d ($d \ne 0$)	60° 0).
(a)	Find \mathbf{M} in terms of d .	[4]
(b)	The unit square in the <i>x-y</i> plane is transformed by M onto a parallelogram of area $\frac{1}{2}d^2$ units ² . Show that $d = 2$.	[2]

3

(d) Find the equations of the invariant lines, through the origin, of the transformation in the *x-y* plane represented by **MN**. [5]

4 The matrices A, B and C are given by

$$\mathbf{A} = \begin{pmatrix} 2 & k & k \\ 5 & -1 & 3 \\ 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \quad \mathbf{C} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 0 \end{pmatrix},$$

where k is a real constant.

(b) Given that **A** is singular, find the value of
$$k$$
.

[3]

(c)	Using the value of k from part (b) , find the equations of the invariant lines, through the origin, of the transformation in the x - y plane represented by CAB . [5]

- 5 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & k & 6 \\ 7 & 8 & 9 \end{pmatrix}$.
 - (a) Find the set of values of k for which A is non-singular. [3]

(b) Given that **A** is non-singular, find, in terms of k, the entries in the top row of \mathbf{A}^{-1} . [4]

(c) Given that $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, give an example of a matrix \mathbf{C} such that $\mathbf{BAC} = \begin{pmatrix} 2 & 1 \\ k & 4 \end{pmatrix}$. [4]

(d)	Find the set of values of k for which the transformation in the x - y plane represented by	$\binom{2}{k}$	$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$	has
	two distinct invariant lines through the origin.	`	,	[6]

- 6 The cubic equation $x^3 + 5x^2 + 10x 2 = 0$ has roots α , β , γ .
 - (a) Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

[3]

(b) Show that the matrix
$$\begin{pmatrix} 1 & \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix}$$
 is singular. [4]

- 7 Let $\mathbf{A} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, where a is a positive constant.
 - (a) State the type of the geometrical transformation in the x-y plane represented by **A**. [1]
 - **(b)** Prove by mathematical induction that, for all positive integers n,

$$\mathbf{A}^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}.$$
 [5]

Let $\mathbf{B} = \begin{pmatrix} b & b \\ a^{-1} & a^{-1} \end{pmatrix}$, where b is a positive constant.

(c) Find the equations of the invariant lines, through the origin, of the transformation in the x-y plane represented by $\mathbf{A}^n\mathbf{B}$.

- **8** The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, where a and b are positive constants.
 - (a) The matrix \mathbf{M} represents a sequence of two geometrical transformations.

State the type of each transformation, and make clear the order in which they are applied. [2]

The unit square in the x-y plane is transformed by \mathbf{M} onto parallelogram OPQR.

(b) Find, in terms of a and b, the matrix which transforms parallelogram OPQR onto the unit square.

[2]

It is given that the area of OPQR is 2 cm^2 and that the line x+3y=0 is invariant under the transformation represented by \mathbf{M} .

(c) Find the values of a and b.

[5]

- 9 The cubic equation $x^3 + cx + 1 = 0$, where c is a constant, has roots α , β , γ .
 - (a) Find a cubic equation whose roots are α^3 , β^3 , γ^3 .

[3]

(b) Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$. [3]

(c) Find the real value of
$$c$$
 for which the matrix $\begin{pmatrix} 1 & \alpha^3 & \beta^3 \\ \alpha^3 & 1 & \gamma^3 \\ \beta^3 & \gamma^3 & 1 \end{pmatrix}$ is singular.

[5]

10 The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}.$$

- (a) Give full details of the geometrical transformation in the x-y plane represented by A. [1]
- (b) Give full details of the geometrical transformation in the x-y plane represented by **B**. [2]

The triangle DEF in the x-y plane is transformed by **AB** onto triangle PQR.

(c) Show that the triangles DEF and PQR have the same area. [3]

(0)	Find the equations of the invariant lines, through the origin, of the transformation in the x - y plane
(e)	represented by AB . [5]

[2]

(d) Find the matrix which transforms triangle PQR onto triangle DEF.

- 11 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (a) The matrix M represents a sequence of two geometrical transformations.

State the type of each transformation, and make clear the order in which they are applied. [2]

(b) Find the values of θ , for $0 \le \theta \le \pi$, for which the transformation represented by **M** has exactly one invariant line through the origin, giving your answers in terms of π . [9]

12 (a) Give full details of the geometrical transformation in the x-y plane represented by the matrix $\begin{pmatrix} 6 & 0 \end{pmatrix}$

 $\binom{0}{6}$. [1]

Let $\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 2 & 2 \end{pmatrix}$.

(b) The triangle DEF in the x-y plane is transformed by **A** onto triangle PQR.

Given that the area of triangle DEF is 13 cm^2 , find the area of triangle PQR.

[2]

(c) Find the matrix **B** such that $\mathbf{AB} = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$. [2]

(d) Show that the origin is the only invariant point of the transformation in the x-y plane represented by \mathbf{A} . [4]