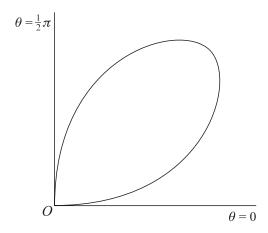
1



The diagram shows one loop of the curve whose polar equation is $r = a \sin 2\theta$, where a is a positive constant. Find the area of the loop, giving your answer in terms of a and π . [4]

2 The curve *C* has equation

$$\left(x^2 + y^2\right)^2 = 4xy.$$

- (i) Show that the polar equation of C is $r^2 = 2 \sin 2\theta$. [2]
- (ii) Draw a sketch of C, indicating any lines of symmetry as well as the form of C at the pole. [5]
- (iii) Write down the maximum possible distance of a point of C from the pole. [1]

3 The curve C has polar equation

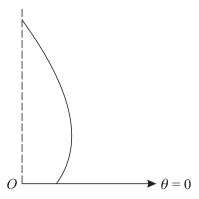
$$r=\frac{\pi-\theta}{\theta},$$

where $\frac{1}{2}\pi \le \theta \le \pi$.

- (i) Draw a sketch of C. [3]
- (ii) Show that the area of the region bounded by the line $\theta = \frac{1}{2}\pi$ and C is

$$\pi\left(\frac{3}{4}-\ln 2\right). \tag{5}$$

4	Draw a diagram to illustrate the region R which is bounded by the curve whose polar equation $r = \cos 2\theta$ and the lines $\theta = 0$ and $\theta = \frac{1}{6}\pi$.	n is [2]
	Determine the exact area of R .	[4]



The diagram shows the curve C with polar equation $r = e^{\theta}$, where $0 \le \theta \le \frac{1}{2}\pi$. Find the maximum distance of a point of C from the line $\theta = \frac{1}{2}\pi$, giving the answer in exact form. [4]

Find the area of the finite region bounded by C and the lines $\theta = 0$ and $\theta = \frac{1}{2}\pi$, giving the answer in exact form.

6 The curves C_1 and C_2 have polar equations

$$r = \theta + 2$$
 and $r = \theta^2$

respectively, where $0 \le \theta \le \pi$.

- (i) Find the polar coordinates of the point of intersection of C_1 and C_2 . [2]
- (ii) Sketch C_1 and C_2 on the same diagram. [2]
- (iii) Find the area bounded by C_1 , C_2 and the line $\theta = 0$. [3]

- 7 Draw a sketch of the curve *C* whose polar equation is $r = \theta$, for $0 \le \theta \le \frac{\pi}{2}$ [2]
 - On the same diagram draw the line $\theta = \alpha$, where $0 < \alpha < \frac{1}{2}\pi$. [1]

The region bounded by C and the line $\theta = \frac{1}{2}\pi$ is denoted by R. Find the exact value of α for which the line $\theta = \alpha$ divides R into two regions of equal area. [4]

8 The curve C has polar equation

$$r = a(1 - e^{-\theta}),$$

where *a* is a positive constant and $0 \le \theta < 2\pi$.

(i) Draw a sketch of
$$C$$
. [3]

(ii) Show that the area of the region bounded by C and the lines $\theta = \ln 2$ and $\theta = \ln 4$ is

$$\frac{1}{2}a^2(\ln 2 - \frac{13}{32}).$$
 [4]

9 The curve C has polar equation

$$r = \frac{a}{1+\theta},$$

where *a* is a positive constant and $0 \le \theta \le \frac{1}{2}\pi$.

- (i) Show that r decreases as θ increases.
- (ii) The point P of C is further from the initial line than any other point of C. Show that, at P,

$$\tan \theta = 1 + \theta,$$

and verify that this equation has a root between 1.1 and 1.2.

[3]

[4]

[2]

- (iii) Draw a sketch of C.
- (iv) Find the area of the region bounded by the initial line, the line $\theta = \frac{1}{2}\pi$ and C, leaving your answer in terms of π and a.

10	The curve C has polar equation $r = 2\cos 2\theta$. Sketch the curve for $0 \le \theta < 2\pi$.	[4]
----	---	-----

Find the exact area of one loop of the curve. [4]

11 The curves C_1 and C_2 have polar equations

$$C_1$$
: $r = a$,

$$C_2$$
: $r = 2a\cos 2\theta$, for $0 \le \theta \le \frac{1}{4}\pi$,

where a is a positive constant. Sketch C_1 and C_2 on the same diagram. [3]

The curves C_1 and C_2 intersect at the point with polar coordinates (a, β) . State the value of β . [1]

Show that the area of the region bounded by the initial line, the arc of C_1 from $\theta=0$ to $\theta=\beta$, and the arc of C_2 from $\theta=\beta$ to $\theta=\frac{1}{4}\pi$ is

$$a^2\left(\frac{1}{6}\pi - \frac{1}{8}\sqrt{3}\right).$$
 [4]

12 The curve C has polar equation $r = 2 + 2\cos\theta$, for $0 \le \theta \le \pi$. Sketch the graph of C. [2]

Find the area of the region R enclosed by C and the initial line.

The half-line $\theta = \frac{1}{5}\pi$ divides *R* into two parts. Find the area of each part, correct to 3 decimal places.

[3]

[4]

13 The curve C has cartesian equation

$$(x^2 + y^2)^2 = a^2(x^2 - y^2),$$

where a is a positive constant. Show that C has polar equation

$$r^2 = a^2 \cos 2\theta. \tag{2}$$

Sketch
$$C$$
 for $-\pi < \theta \le \pi$. [2]

Find the area of the sector between
$$\theta = -\frac{1}{4}\pi$$
 and $\theta = \frac{1}{4}\pi$. [3]

Find the polar coordinates of all points of C where the tangent is parallel to the initial line. [7]

14	Find the area of the region enclosed by the curve with polar equation $r = 2(1 + \cos \theta)$, for $0 \le \theta < 2\pi$.
	[4]

15 Use the identity $2 \sin P \cos Q = \sin(P + Q) + \sin(P - Q)$ to show that

$$2\sin\theta\cos(\theta - \frac{1}{4}\pi) \equiv \cos(2\theta - \frac{3}{4}\pi) + \frac{1}{\sqrt{2}}.$$
 [3]

A curve has polar equation $r = 2\sin\theta\cos(\theta - \frac{1}{4}\pi)$, for $0 \le \theta \le \frac{3}{4}\pi$. Sketch the curve and state the polar equation of its line of symmetry, justifying your answer. [3]

Show that the area of the region enclosed by the curve is $\frac{3}{8}(\pi + 1)$. [6]

- The curve *C* has polar equation $r = a(1 + \sin \theta)$, where *a* is a positive constant and $0 \le \theta < 2\pi$. Draw a sketch of *C*.
 - Find the exact value of the area of the region enclosed by C and the half-lines $\theta = \frac{1}{3}\pi$ and $\theta = \frac{2}{3}\pi$. [4]

17 The curve *C* has cartesian equation $(x^2+y^2)^2 = 2a^2xy$, where *a* is a positive constant. Show that the polar equation of *C* is $r^2 = a^2 \sin 2\theta$. [3]

Sketch
$$C$$
 for $-\pi < \theta \le \pi$. [2]

Find the area enclosed by one loop of C. [2]

18 The curves C_1 and C_2 have polar equations

$$\begin{split} C_1: \quad r &= \frac{1}{\sqrt{2}}, \quad \text{for } 0 \leqslant \theta < 2\pi, \\ C_2: \quad r &= \sqrt{\left(\sin\frac{1}{2}\theta\right)}, \quad \text{for } 0 \leqslant \theta \leqslant \pi. \end{split}$$

Find the polar coordinates of the point of intersection of C_1 and C_2 . [2]

Sketch C_1 and C_2 on the same diagram. [3]

Find the exact value of the area of the region enclosed by C_1 , C_2 and the half-line $\theta = 0$. [4]

9231/13/M/J/15

19 The curve C has polar equation $r = e^{4\theta}$ for $0 \le \theta \le \alpha$, where α is measured in radians. The length of

[6]

C is 2015. Find the value of α .

20 A curve C has polar equation $r^2 = 8 \csc 2\theta$ for $0 < \theta < \frac{\pi}{2}$. Find a cartesian equation of C. [3]

Sketch
$$C$$
. [2]

Determine the exact area of the sector bounded by the arc of C between $\theta = \frac{1}{6}\pi$ and $\theta = \frac{1}{3}\pi$, the half-line $\theta = \frac{1}{6}\pi$ and the half-line $\theta = \frac{1}{3}\pi$.

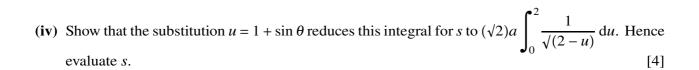
[It is given that
$$\int \csc x \, dx = \ln \left| \tan \frac{1}{2} x \right| + c.$$
]

- 21 A curve has polar equation $r = \frac{1}{1 \cos \theta}$, for $0 < \theta < 2\pi$. Find, in the form $y^2 = f(x)$, the cartesian equation of the curve.
 - Hence sketch the curve, and shade the region whose area is given by $\frac{1}{2} \int_{\frac{1}{2}\pi}^{\frac{3}{2}\pi} \frac{1}{(1-\cos\theta)^2} d\theta$. [3]
 - Using the cartesian equation of the curve, find the area of this region. [3]

22	The curve C has polar equation $r = a(1 + \sin \theta)$ for $-\pi < \theta \le \pi$, where a is a positive constant.		
	(i) Sketch C.	[2]	
	(ii) Find the area of the region enclosed by C .	[4]	

(iii) Show that the length of the arc of C from the pole to the point furthest from the pole is given by

$$s = (\sqrt{2})a \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \sqrt{(1+\sin\theta)} \,d\theta.$$
 [3]



(i) Show that $r = -2a \sin 2\theta$ and sketch C.

[4]

(ii) Deduce that the cartesian equation of C is

$$(x^2 + y^2)^{\frac{3}{2}} = -4axy. [2]$$

(iii)	Find	the	area	of	one	loop	of	C
-------	------	-----	------	----	-----	------	----	---

[5]

(iv) Show that, at the points (other than the pole) at which a tangent to C is parallel to the initial line,

[3]

 $2\tan\theta = -\tan 2\theta.$

24	The curve C has polar equation $r = \cos 2\theta$, for	$r - \frac{1}{4}\pi \le$	$\theta \leqslant \frac{1}{4}\pi$
----	---	--------------------------	-----------------------------------

(i) Sketch *C*. [2]

(ii) Find the area of the region enclosed by C, showing full working.

[3]

(iii) Find a cartesian equation of C.

[3]

25	The curves C_1	and C_2	have polar	equations,	for $0 \le \theta$	$\leq \pi$,	as follows:
		,	1	1 /		- /	

$$C_1$$
: $r = a$,
 C_2 : $r = 2a|\cos\theta|$,

where a is a positive constant. The curves intersect at the points P_1 and P_2 .

(i) Find the polar coordinates of
$$P_1$$
 and P_2 .

[2]

(ii) In a single diagram, sketch ${\cal C}_1,\,{\cal C}_2$ and their line of symmetry.

[3]

(iii) The region R enclosed by C_1 and C_2 is bounded by the arcs OP_1 , P_1P_2 and P_2O , where O is pole. Find the area of R , giving your answer in exact form.	s the [5]

26 The curve C_1 has polar equation $r^2 = 2\theta$, for $0 \le \theta \le \frac{1}{2}\pi$.

(i) The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P. Show that, at P,

 $2\theta \tan \theta = 1$

and verify that this equation has a root between 0.6 and 0.7.

[5]

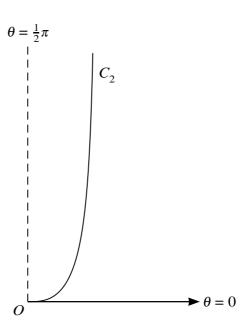
The curve C_2 has polar equation $r^2 = \theta \sec^2 \theta$, for $0 \le \theta < \frac{1}{2}\pi$. The curves C_1 and C_2 intersect at the pole, denoted by O, and at another point Q.

(ii) Find the exact value of θ at Q.

[2]

[2]

(iii) The diagram below shows the curve ${\cal C}_2$. Sketch ${\cal C}_1$ on this diagram.



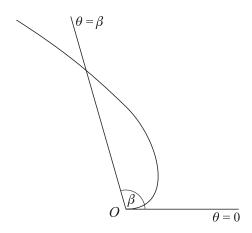
(iv) Find, in exact form, the area of the region OPQ enclosed by C_1 and C_2 .	
--	--

[5]

27 The curve C has polar equation $r^2 = \ln(1 + \theta)$, for $0 \le \theta \le 2\pi$

. (i) Sketch *C*. [2]

(ii) Using the substitution $u = 1 + \theta$, or otherwise, find the area of the region bounded by C and the initial line, leaving your answer in an exact form. [5]



The curve C has polar equation

$$r=\theta^{\frac{1}{2}}\mathrm{e}^{\theta^2/\pi},$$

where $0 \le \theta \le \pi$. The area of the finite region bounded by C and the line $\theta = \beta$ is π (see diagram). Show that

$$\beta = (\pi \ln 3)^{\frac{1}{2}}.$$
 [6]

29 The curve C has polar equation

$$r = e^{\frac{1}{5}\theta}, \qquad 0 \leqslant \theta \leqslant \frac{3}{2}\pi.$$

(i) Draw a sketch of C. [2]

(ii) Find the length of C, correct to 3 significant figures. [4]

30 The curves C_1 and C_2 have polar equations

$$r = 4\cos\theta$$
 and $r = 1 + \cos\theta$

respectively, where $-\frac{1}{2}\pi \le \theta \le \frac{1}{2}\pi$.

- (i) Show that C_1 and C_2 meet at the points $A\left(\frac{4}{3}, \alpha\right)$ and $B\left(\frac{4}{3}, -\alpha\right)$, where α is the acute angle such that $\cos \alpha = \frac{1}{3}$.
- (ii) In a single diagram, draw sketch graphs of C_1 and C_2 . [3]
- (iii) Show that the area of the region bounded by the arcs OA and OB of C_1 , and the arc AB of C_2 , is

$$4\pi - \frac{1}{3}\sqrt{2} - \frac{13}{2}\alpha.$$
 [7]

31 The curve C has equation

$$r = 10\ln(1+\theta),$$

where
$$0 \le \theta \le \frac{1}{2}\pi$$
. Draw a sketch of C .

Use the substitution $w = \ln(1 + \theta)$ to show that the area of the sector bounded by the line $\theta = \frac{1}{2}\pi$ and the arc of C joining the origin to the point where $\theta = \frac{1}{2}\pi$ is

[2]

$$50(b^2 - 2b + 2)e^b - 100,$$

where
$$b = \ln(1 + \frac{1}{2}\pi)$$
. [6]

32 The curve	<i>C</i> has	polar	equation
--------------	--------------	-------	----------

 $r = \theta \sin \theta$,

where $0 \le \theta \le \pi$. Draw a sketch of C. [2]

Find the area of the region enclosed by C, leaving your answer in terms of π . [7]

33 The curve C has polar equation

$$r = \left(\frac{1}{2}\pi - \theta\right)^2,$$

where $0 \le \theta \le \frac{1}{2}\pi$. Draw a sketch of C.

Find the area of the region bounded by C and the initial line, leaving your answer in terms of π . [3]

[3]

34 The curve C has polar equation

$$r = a \sin 3\theta$$
,

where $0 \le \theta \le \frac{1}{3}\pi$.

- (i) Show that the area of the region enclosed by C is $\frac{1}{12}\pi a^2$. [3]
- (ii) Show that, at the point of C at maximum distance from the initial line,

$$\tan 3\theta + 3\tan \theta = 0. ag{3}$$

[4]

(iii) Use the formula

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

to find this maximum distance.

(iv) Draw a sketch of C. [2]

35 The curves C_1 and C_2 have polar equations given by

 $\begin{aligned} C_1: & r = 3\sin\theta, & 0 \leqslant \theta < \pi, \\ C_2: & r = 1 + \sin\theta, & -\pi < \theta \leqslant \pi. \end{aligned}$

- (i) Find the polar coordinates of the points, other than the pole, where C_1 and C_2 meet. [2]
- (ii) In a single diagram, draw sketch graphs of C_1 and C_2 . [3]
- (iii) Show that the area of the region which is inside C_1 but outside C_2 is π . [5]

36	The curve C has polar equation $r = 3 + 2\cos\theta$, for $-\pi < \theta \le \pi$. The straight line l h	nas polar equation
	$r \cos \theta = 2$. Sketch both C and l on a single diagram.	[3]

Find the polar coordinates of the points of intersection of C and l. [4]

The region R is enclosed by C and l, and contains the pole. Find the area of R. [6]

37 The curve C has polar equation $r = 1 + \sin \theta$ for $-\frac{1}{2}\pi \le \theta \le \frac{1}{2}\pi$. Draw a sketch of C. [2]

The area of the region enclosed by the initial line, the half-line $\theta = \frac{1}{2}\pi$, and the part of C for which θ is positive, is denoted by A_1 . The area of the region enclosed by the initial line, and the part of C for which θ is negative, is denoted by A_2 . Find the ratio $A_1:A_2$, giving your answer correct to 1 decimal place.

38 Find the cartesian equation corresponding to the polar equation $r = (\sqrt{2})\sec(\theta - \frac{\pi}{4})$. [3]

Sketch the graph of $r = (\sqrt{2}) \sec(\theta - \frac{1}{4}\pi)$, for $-\frac{1}{4}\pi < \theta < \frac{3}{4}\pi$, indicating clearly the polar coordinates of the intersection with the initial line. [2]

- 39 The curve *C* has polar equation $r = 1 + 2\cos\theta$. Sketch the curve for $-\frac{2}{3}\pi \le \theta < \frac{2}{3}\pi$. [2]
 - Find the area bounded by C and the half-lines $\theta = -\frac{1}{3}\pi$, $\theta = \frac{1}{3}\pi$. [4]

40	The curve C h	as polar	equation	$r = 2e^{\theta}$,	for	$\frac{1}{\epsilon} \pi \leq$	$\theta \leqslant \frac{1}{2}\pi$.	Find
----	-----------------	----------	----------	---------------------	-----	-------------------------------	-------------------------------------	------

(i) the area of the region bounded by the half-lines $\theta = \frac{1}{6}\pi$, $\theta = \frac{1}{2}\pi$ and C, [2]

(ii) the length of C. [3]

41 The curve C has polar equation $r = 2 \sin \theta (1 - \cos \theta)$, for $0 \le \theta \le \pi$. Find $\frac{dr}{d\theta}$ and hence find the polar coordinates of the point of C that is furthest from the pole. [5]

Sketch C. [2]

Find the exact area of the sector from $\theta = 0$ to $\theta = \frac{1}{4}\pi$. [6]

- A circle has polar equation r = a, for $0 \le \theta < 2\pi$, and a cardioid has polar equation $r = a(1 \cos \theta)$, for $0 \le \theta < 2\pi$, where a is a positive constant. Draw sketches of the circle and the cardioid on the same diagram. [3]
 - Write down the polar coordinates of the points of intersection of the circle and the cardioid. [2]

Show that the area of the region that is both inside the circle and inside the cardioid is

$$\left(\frac{5}{4}\pi - 2\right)a^2. \tag{6}$$

The curve C has polar equation $r = a(1 - \cos \theta)$ for $0 \le \theta < 2\pi$. Sketch C. [2]

Find the area of the region enclosed by the arc of C for which $\frac{1}{2}\pi \leqslant \theta \leqslant \frac{3}{2}\pi$, the half-line $\theta = \frac{1}{2}\pi$ and the half-line $\theta = \frac{3}{2}\pi$.

Show that

$$\left(\frac{\mathrm{d}s}{\mathrm{d}\theta}\right)^2 = 4a^2\sin^2\left(\frac{1}{2}\theta\right),\,$$

where *s* denotes arc length, and find the length of the arc of *C* for which $\frac{1}{2}\pi \le \theta \le \frac{3}{2}\pi$. [7]

44	The polar equation of a curve C is $r = a(1 + \cos \theta)$ for $0 \le \theta < 2\pi$, where a is a positive constant.						
	(i)	Sketch C.	[2]				
	(ii)	Show that the cartesian equation of C is					
		$x^2 + y^2 = a(x + \sqrt{(x^2 + y^2)}).$	[2]				

(iii) Find the area of the sector of C between $\theta = 0$ and $\theta = \frac{1}{3}\pi$.

[4]

(iv) Find the arc length of C between the point where $\theta = 0$ and the point where θ	$\theta = \frac{1}{3}\pi$.
---	-----------------------------

[5]

9231/11/O/N/17

45 The curve C has polar equation

$$r = 5\sqrt{\cot\theta}$$
,

where $0.01 \le \theta \le \frac{1}{2}\pi$.

(i) Find the area of the finite region bounded by C and the line $\theta = 0.01$, showing full working. Give your answer correct to 1 decimal place. [3]

Let *P* be the point on *C* where $\theta = 0.01$.

(ii) Find the distance of P from the initial line, giving your answer correct to 1 decimal place. [2]

(iii) Find the maximum distance of C from the initial line.	[3]
(iv) Skatah C	[2]
(iv) Sketch C.	[2]

46	The curve C has polar equation $r = a\cos 3\theta$, for $-\frac{1}{6}\pi \le \theta \le \frac{1}{6}\pi$, where a is a positive constant.	
	(i) Sketch C.	[2]
	(ii) Find the area of the region enclosed by C , showing full working.	[3]

(iii) Using the identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, find a cartesian equation of C. [3]

47 The curves C_1 and C_2 have polar equations, for $0 \le \theta \le \frac{1}{2}\pi$, as follows:

$$C_1 : r = 2(e^{\theta} + e^{-\theta}),$$

 $C_2 : r = e^{2\theta} - e^{-2\theta}.$

The curves intersect at the point *P* where $\theta = \alpha$.

(i) Show that $e^{2\alpha} - 2e^{\alpha} - 1 = 0$. Hence find the exact value of α and show that the value of r at P is $4\sqrt{2}$.

(ii)	Sketch	C_1	and	C_2	on	the	same	diagram.
------	--------	-------	-----	-------	----	-----	------	----------

[3]

(iii) Find the area of the region enclosed by C_1 , C_2 and the initial line, giving your answer correct to 3 significant figures. [5]

48 (a) Show that the curve with Cartesian equation

$$(x^2 + y^2)^{\frac{5}{2}} = 4xy(x^2 - y^2)$$

has polar equation $r = \sin 4\theta$.

[4]

The curve C	has polar	equation	$r = \sin 4\theta$,	for 0 ≤	$\leq \theta \leq \frac{1}{4}\pi$.
-------------	-----------	----------	----------------------	---------	-------------------------------------

(b) Sketch *C* and state the equation of the line of symmetry.

(c) Find the exact value of the area of the region enclosed by C.

[4]

[3]

(d)	Using the identity $\sin 4\theta \equiv 4 \sin \theta \cos^3 \theta - 4 \sin^3 \theta \cos \theta$, find the maximum distance of <i>C</i> from the line $\theta = \frac{1}{2}\pi$. Give your answer correct to 2 decimal places. [6]

- 49 The curve C has polar equation $r = \ln(1 + \pi \theta)$, for $0 \le \theta \le \pi$.
 - (a) Sketch C and state the polar coordinates of the point of C furthest from the pole.

(b) Using the substitution $u = 1 + \pi - \theta$, or otherwise, show that the area of the region enclosed by C and the initial line is

$$\frac{1}{2}(1+\pi)\ln(1+\pi)(\ln(1+\pi)-2)+\pi.$$
 [6]

[3]

$$(1+\pi-\theta)\ln(1+\pi-\theta)-\tan\theta=0$$

[5]

and verify that this equation has a root between 1.2 and 1.3.

- **50** The curve C_1 has polar equation $r = \theta \cos \theta$, for $0 \le \theta \le \frac{1}{2}\pi$.
 - (a) The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P. Show that, at P,

$$2\theta \tan \theta - 1 = 0$$

and verify that this equation has a root between 0.6 and 0.7.

[5]

The curve C_2 has polar equation $r = \theta \sin \theta$, for $0 \le \theta \le \frac{1}{2}\pi$. The curves C_1 and C_2 intersect at the pole, denoted by O, and at another point Q.

(b) Find the polar coordinates of Q, giving your answers in exact form.

[2]

(c)	Sketch C_1 and C_2 on the same diagram.	[3]

- 51 The curve C has polar equation $r = a \tan \theta$, where a is a positive constant and $0 \le \theta \le \frac{1}{4}\pi$.
 - (a) Sketch C and state the greatest distance of a point on C from the pole.

[2]

(b) Find the exact value of the area of the region bounded by C and the half-line $\theta = \frac{1}{4}\pi$. [4]

(c) Show that C has Cartesian equation
$$y = \frac{x^2}{\sqrt{a^2 - x^2}}$$
. [3]

(d) Using your answer to part (b), deduce the exact value of
$$\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2-x^2}} dx$$
. [2]

52 The curve C has polar equation $r = a \cot(\frac{1}{3}\pi - \theta)$, where a is a positive constant and $0 \le \theta \le \frac{1}{6}\pi$.

It is given that the greatest distance of a point on C from the pole is $2\sqrt{3}$.

(a) Sketch C and show that a = 2.

[3]

(b) Find the exact value of the area of the region bounded by C, the initial line and the half-line $\theta = \frac{1}{6}\pi$. [4]

(c) Show that C has Cartesian equation $2(x+y\sqrt{3}) = (x\sqrt{3}-y)\sqrt{x^2+y^2}$. [3]

53 The curve C has polar equation $r = \frac{1}{\pi - \theta} - \frac{1}{\pi}$, where $0 \le \theta \le \frac{1}{2}\pi$.

(a) Sketch *C*. [3]

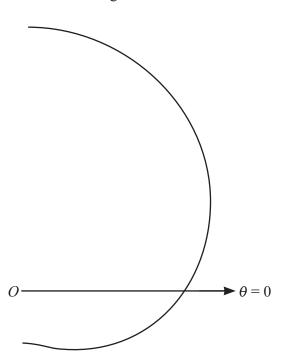
(b) Show that the area of the region bounded by the half-line $\theta = \frac{1}{2}\pi$ and C is $\frac{3 - 4 \ln 2}{4\pi}$. [6]

- 54 The curve C has polar equation $r = 2\cos\theta(1+\sin\theta)$, for $0 \le \theta \le \frac{1}{2}\pi$.
 - (a) Find the polar coordinates of the point on C that is furthest from the pole.

[5]

(b)	Sketch C.	[2]
(c)	Find the area of the region bounded by C and the initial line, giving your answer in exact form.	[6]

- 55 The curve C has polar equation $r = 3 + 2\sin\theta$, for $-\pi < \theta \le \pi$.
 - (a) The diagram shows part of C. Sketch the rest of C on the diagram.



[1]

The straight line *l* has polar equation $r \sin \theta = 2$.

(b) Add *l* to the diagram in part (a) and find the polar coordinates of the points of intersection of *C* and *l*. [5]

(c)	The region R is enclosed by C and l , and contains the pole.	
	Find the area of R , giving your answer in exact form.	[6]

- 56 The curve C has polar equation $r^2 = \tan^{-1}(\frac{1}{2}\theta)$, where $0 \le \theta \le 2$.
 - (a) Sketch C and state, in exact form, the greatest distance of a point on C from the pole. [3]

(b) Find the exact value of the area of the region bounded by C and the half-line $\theta = 2$. [5]

Now consider the part of C where $0 \le \theta \le \frac{1}{2}\pi$.

(c) Show that, at the point furthest from the half-line $\theta = \frac{1}{2}\pi$,

$$(\theta^2 + 4) \tan^{-1} \left(\frac{1}{2}\theta\right) \sin \theta - \cos \theta = 0$$

and verify that this equation has a root between 0.6 and 0.7.

[5]

- 57 The curve C has Cartesian equation $x^2 + xy + y^2 = a$, where a is a positive constant.
 - (a) Show that the polar equation of C is $r^2 = \frac{2a}{2 + \sin 2\theta}$. [3]

(b) Sketch the part of C for $0 \le \theta \le \frac{1}{4}\pi$. [2]

The region *R* is enclosed by this part of *C*, the initial line and the half-line $\theta = \frac{1}{4}\pi$.

(c) It is given that $\sin 2\theta$ may be expressed as $\frac{2 \tan \theta}{1 + \tan^2 \theta}$. Use this result to show that the area of R is

$$\frac{1}{2}a\int_0^{\frac{1}{4}\pi} \frac{1+\tan^2\theta}{1+\tan\theta+\tan^2\theta} d\theta$$

and use the substitution $t = \tan \theta$ to find the exact value of this area.

[8]