Past Paper Questions: Vectors

1 Find the acute angle between the planes with equations

$$x-2y+z-9=0$$
 and $x+y-z+2=0$. [3]

The planes meet in the line l, and A is the point on l whose position vector is $p\mathbf{i} + q\mathbf{j} + \mathbf{k}$.

(i) Find
$$p$$
 and q . [2]

(ii) Find a vector equation for
$$l$$
. [3]

The non-coincident planes Π_1 and Π_2 are both perpendicular to l. The perpendicular distance from A to Π_1 is $\sqrt{14}$ and the perpendicular distance from A to Π_2 is also $\sqrt{14}$. Find equations for Π_1 and Π_2 in the form ax + by + cz = d.

2 (i) Find the acute angle beween the line l whose equation is

$$\mathbf{r} = s(2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$$

and the plane Π_1 whose equation is

$$x - z = 0. ag{3}$$

- (ii) Find, in the form ax + by + cz = 0, the equation of the plane Π_2 which contains l and is perpendicular to Π_1 .
- (iii) Find a vector equation of the line of intersection of the planes Π_1 and Π_2 and hence, or otherwise, show that the vectors $\mathbf{i} \mathbf{k}$, $2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ are linearly dependent. [3]
- (iv) The variable line m passes through the point with position vector $4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ and is perpendicular to l. The line m meets Π_1 at Q. Find the minimum distance of Q from the origin, as m varies, giving your answer correct to 3 significant figures. [5]

3	The points A , B , C have position vectors $a\mathbf{i}$, $b\mathbf{j}$, $c\mathbf{k}$ respectively, where a , b , c are all positive. plane containing A , B , C is denoted by Π .	The
	(i) Find a vector perpendicular to Π .	[3]

(ii) Find the perpendicular distance from the origin to Π , in terms of a, b, c. [3]

4 The planes Π_1 and Π_2 have equations

$$x + 2y - 3z + 4 = 0$$
 and $2x + y - 4z - 3 = 0$

respectively. Show that, for all values of λ , every point which is in both Π_1 and Π_2 is also in the plane

$$x + 2y - 3z + 4 + \lambda(2x + y - 4z - 3) = 0.$$
 [2]

The planes Π_1 and Π_2 meet in the line l.

- (i) Find the equation of the plane Π_3 which passes through l and the point whose position vector is $a\mathbf{k}$.
- (ii) Find the value of a if Π_2 is perpendicular to Π_3 . [3]

5 The equation of the plane Π is

$$2x + 3y + 4z = 48$$
.

Obtain a vector equation of Π in the form

$$\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c},$$

where \mathbf{a} , \mathbf{b} and \mathbf{c} are of the form $p\mathbf{i}$, $q\mathbf{i} + r\mathbf{j}$ and $s\mathbf{i} + t\mathbf{k}$ respectively, and where p, q, r, s, t are integers. [6]

The line *l* has vector equation $\mathbf{r} = 29\mathbf{i} - 2\mathbf{j} - \mathbf{k} + \theta(5\mathbf{i} - 6\mathbf{j} + 2\mathbf{k})$. Show that *l* lies in Π . [3]

Find, in the form ax + by + cz = d, the equation of the plane which contains l and is perpendicular to Π . [4]

- The line l_1 passes through the points P and Q whose position vectors are $\mathbf{i} \mathbf{j} 2\mathbf{k}$ and $-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}$ respectively. The line l_2 passes through the point S whose position vector is $\mathbf{i} 2\mathbf{j} + 8\mathbf{k}$ and is parallel to the vector $\mathbf{i} \mathbf{j} 3\mathbf{k}$. The point whose position vector is $-\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ is on the line l_3 , the common perpendicular to l_1 and l_2 .
 - (i) Find, in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, an equation for l_3 . [3]
 - (ii) Find the perpendicular distance from S to l_3 . [4]
 - (iii) Find the perpendicular distance from S to the plane which contains l_3 and passes through P. [4]

7 The position vectors of the points A, B, C, D are

$$7\mathbf{i} + 4\mathbf{j} - \mathbf{k}$$
, $3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$, $2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$, $2\mathbf{i} + 7\mathbf{j} + \lambda\mathbf{k}$

respectively. It is given that the shortest distance between the line AB and the line CD is 3.

(i) Show that
$$\lambda^2 - 5\lambda + 4 = 0$$
. [7]

(ii) Find the acute angle between the planes through A, B, D corresponding to the values of λ satisfying the equation in part (i). [7]

- The line l_1 is parallel to the vector $4\mathbf{j} \mathbf{k}$ and passes through the point A whose position vector is $2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$. The variable line l_2 is parallel to the vector $\mathbf{i} (2\sin t)\mathbf{j}$, where $0 \le t < 2\pi$, and passes through the point B whose position vector is $\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$. The points P and Q are on l_1 and l_2 , respectively, and PQ is perpendicular to both l_1 and l_2 .
 - (i) Find the length of PQ in terms of t. [5]
 - (ii) Hence find the values of t for which l_1 and l_2 intersect. [2]
 - (iii) For the case $t = \frac{1}{4}\pi$, find the perpendicular distance from *A* to the plane *BPQ*, giving your answer correct to 3 decimal places. [5]

9 The lines l_1 and l_2 have vector equations

$$\mathbf{r} = 4\mathbf{i} - 2\mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} - 4\mathbf{k})$$
 and $\mathbf{r} = 4\mathbf{i} - 5\mathbf{j} + 2\mathbf{k} + \mu(\mathbf{i} - \mathbf{j} - \mathbf{k})$

respectively.

- (i) Show that l_1 and l_2 intersect. [3]
- (ii) Find the perpendicular distance from the point P whose position vector is $3\mathbf{i} 5\mathbf{j} + 6\mathbf{k}$ to the plane containing l_1 and l_2 . [3]
- (iii) Find the perpendicular distance from P to l_1 . [4]

- The line l_1 passes through the point A whose position vector is $3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and is parallel to the vector $\mathbf{i} + \mathbf{j}$. The line l_2 passes through the point B whose position vector is $-\mathbf{i} \mathbf{k}$ and is parallel to the vector $\mathbf{j} + 2\mathbf{k}$. The point P is on l_1 and the point Q is on l_2 and PQ is perpendicular to both l_1 and l_2 .
 - (i) Find the length of PQ. [4]
 - (ii) Find the position vector of Q. [5]
 - (iii) Show that the perpendicular distance from Q to the plane containing AB and the line l_1 is $\sqrt{3}$.

- 11 The line l_1 passes through the point with position vector $8\mathbf{i} + 8\mathbf{j} 7\mathbf{k}$ and is parallel to the vector $4\mathbf{i} + 3\mathbf{j}$. The line l_2 passes through the point with position vector $7\mathbf{i} 2\mathbf{j} + 4\mathbf{k}$ and is parallel to the vector $4\mathbf{i} \mathbf{k}$. The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . In either order,
 - (i) show that PQ = 13,
 - (ii) find the position vectors of P and Q.

[9]

12 The lines l_1 and l_2 have equations

$$l_1\colon \ \mathbf{r}=6\mathbf{i}+5\mathbf{j}+4\mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+\mathbf{k}) \quad \text{and} \quad l_2\colon \ \mathbf{r}=6\mathbf{i}+5\mathbf{j}+4\mathbf{k}+\mu(4\mathbf{i}+6\mathbf{j}+\mathbf{k}).$$

Find a cartesian equation of the plane Π containing l_1 and l_2 .

[4]

Find the position vector of the foot of the perpendicular from the point with position vector $\mathbf{i} + 10\mathbf{j} + 3\mathbf{k}$ to Π . [4]

The line l_3 has equation $\mathbf{r} = \mathbf{i} + 10\mathbf{j} + 3\mathbf{k} + v(2\mathbf{i} - 3\mathbf{j} + \mathbf{k})$. Find the shortest distance between l_1 and l_3 .

The position vectors of the points A, B, C, D are

$$2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$$
, $-2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$, $\mathbf{i} + 4\mathbf{j} + \mathbf{k}$, $\mathbf{i} + 5\mathbf{j} + m\mathbf{k}$,

respectively, where m is an integer. It is given that the shortest distance between the line through A and B and the line through C and D is B. Show that the only possible value of B is B. [7]

Find the shortest distance of D from the line through A and C. [3]

Show that the acute angle between the planes
$$ACD$$
 and BCD is $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$. [4]

14 The plane Π_1 has parametric equation

$$\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - \mathbf{k}) + \mu(\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}).$$

Find a cartesian equation of Π_1 .

[4]

The plane Π_2 has cartesian equation 3x - 2y - 3z = 4. Find the acute angle between Π_1 and Π_2 . [3]

Find a vector equation of the line of intersection of Π_1 and Π_2 .

[4]

15 The points A, B, C and D have coordinates as follows:

$$A(2, 1, -2)$$
, $B(4, 1, -1)$, $C(3, -2, -1)$ and $D(3, 6, 2)$.

The plane Π_1 passes through the points A, B and C. Find a cartesian equation of Π_1 . [4]

Find the area of triangle ABC and hence, or otherwise, find the volume of the tetrahedron ABCD.

[The volume of a tetrahedron is
$$\frac{1}{3}$$
 × area of base × perpendicular height.]

The plane Π_2 passes through the points A, B and D. Find the acute angle between Π_1 and Π_2 . [4]

The line l_1 passes through the point A whose position vector is $4\mathbf{i} + 7\mathbf{j} - \mathbf{k}$ and is parallel to the vector $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. The line l_2 passes through the point B whose position vector is $\mathbf{i} + 7\mathbf{j} + 11\mathbf{k}$ and is parallel to the vector $\mathbf{i} - 6\mathbf{j} - 2\mathbf{k}$. The points P on l_1 and Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . Find the position vectors of P and Q.

Find the shortest distance between the line through A and B and the line through P and Q, giving your answer correct to 3 significant figures. [6]

- 17 The line l_1 passes through the points A(2, 3, -5) and B(8, 7, -13). The line l_2 passes through the points C(-2, 1, 8) and D(3, -1, 4). Find the shortest distance between the lines l_1 and l_2 . [5]
 - The plane Π_1 passes through the points A,B and D. The plane Π_2 passes though the points A,C and D. Find the acute angle between Π_1 and Π_2 , giving your answer in degrees. [6]

With respect to an origin O, the point A has position vector $4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and the plane Π_1 has equation

$$\mathbf{r} = (4 + \lambda + 3\mu)\mathbf{i} + (-2 + 7\lambda + \mu)\mathbf{j} + (2 + \lambda - \mu)\mathbf{k},$$

where λ and μ are real. The point L is such that $\overrightarrow{OL} = 3\overrightarrow{OA}$ and Π_2 is the plane through L which is parallel to Π_1 . The point M is such that $\overrightarrow{AM} = 3\overrightarrow{ML}$.

- (i) Show that A is in Π_1 . [1]
- (ii) Find a vector perpendicular to Π_2 . [2]
- (iii) Find the position vector of the point N in Π_2 such that ON is perpendicular to Π_2 . [5]
- (iv) Show that the position vector of M is $10\mathbf{i} 5\mathbf{j} + 5\mathbf{k}$ and find the perpendicular distance of M from the line through O and N, giving your answer correct to 3 significant figures. [6]

The lines l_1 and l_2 have equations $\mathbf{r} = 8\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j})$ and $\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} - 14\mathbf{k} + \mu(2\mathbf{j} - 3\mathbf{k})$ respectively. The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . Find the position vector of the point P and the position vector of the point Q.

The points with position vectors $8\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $5\mathbf{i} + 3\mathbf{j} - 14\mathbf{k}$ are denoted by A and B respectively. Find

- (i) $\overrightarrow{AP} \times \overrightarrow{AQ}$ and hence the area of the triangle APQ,
- (ii) the volume of the tetrahedron APQB. (You are given that the volume of a tetrahedron is $\frac{1}{3} \times$ area of base \times perpendicular height.)

[6]

20 A line, passing through the point A(3, 0, 2), has vector equation $\mathbf{r} = 3\mathbf{i} + 2\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$. It meets the plane Π , which has equation $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = 3$, at the point P. Find the coordinates of P. [3]

Write down a vector \mathbf{n} which is perpendicular to Π , and calculate the vector \mathbf{w} , where

$$\mathbf{w} = \mathbf{n} \times (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}). \tag{3}$$

The point Q lies in Π and is the foot of the perpendicular from A to Π . Use the vector \mathbf{w} to determine an equation of the line PQ in the form $\mathbf{r} = \mathbf{u} + \mu \mathbf{v}$.

- Find a cartesian equation of the plane Π_1 passing through the points with coordinates (2, -1, 3), (4, 2, -5) and (-1, 3, -2).
 - The plane Π_2 has cartesian equation 3x y + 2z = 5. Find the acute angle between Π_1 and Π_2 . [3]
 - Find a vector equation of the line of intersection of the planes Π_1 and Π_2 . [4]

The position vectors of the points A, B, C, D are

$$\mathbf{a} = 2\mathbf{i} + \lambda \mathbf{j} - 3\mathbf{k}$$
, $\mathbf{b} = 6\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $\mathbf{c} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\mathbf{d} = \mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$ respectively.

It is given that the shortest distance between the lines AB and CD is 3.

(i) Show that
$$\lambda^2 + \lambda - 20 = 0$$
. [7]

(ii) The planes p_1 and p_2 are the planes through A, B and D corresponding to the two values of λ satisfying the equation in part (i). Find the acute angle between p_1 and p_2 . [7]

The position vectors of the points A, B, C, D are

$$\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$
, $3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$, $3\mathbf{i} - \mathbf{j} + \mathbf{k}$, $5\mathbf{i} - 5\mathbf{j} + \alpha\mathbf{k}$,

respectively, where α is a positive integer. It is given that the shortest distance between the line AB and the line CD is equal to $2\sqrt{2}$.

(i) Show that the possible values of α are 3 and 5.

[7]

(ii) U	Using $\alpha = 3$, find the so 3 significant figure	shortest distance of thes.	ne point $oldsymbol{D}$ from th	e line AC , giving y	our answer correct [3]

(iii) Using $\alpha = 3$, find the acute angle between the planes ABC and ABD, giving your answer in

degrees.

Find the cartesian equation of Π_1 .	
plane Π_2 contains the lines	

24 The plane Π_1 passes through the points (1, 2, 1) and (5, -2, 9) and is parallel to the vector $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.

(ii) Find the cartesian equation of Π_2 .

[4]

(iii) Find the acute angle between Π_1 and $\Pi_2.$

[3]

- 25 The line l_1 is parallel to the vector $a\mathbf{i} \mathbf{j} + \mathbf{k}$, where a is a constant, and passes through the point whose position vector is $9\mathbf{j} + 2\mathbf{k}$. The line l_2 is parallel to the vector $-a\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ and passes through the point whose position vector is $-6\mathbf{i} 5\mathbf{j} + 10\mathbf{k}$.
 - (i) It is given that l_1 and l_2 intersect.

(a) Show that
$$a = -\frac{6}{13}$$
. [3]

(b)	Find a cartesian equation of the plane containing \boldsymbol{l}_1 and \boldsymbol{l}_2 .	
------------	---	--

[4]

(ii) Given instead that the perpendicular distance between l_1 and l_2 is $3\sqrt(30)$, find the value of a. [5]

26	The lines l_1	and l_2 have	vector equations
----	-----------------	----------------	------------------

$$\mathbf{r} = a\mathbf{i} + 9\mathbf{j} + 13\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \quad \text{and} \quad \mathbf{r} = -3\mathbf{i} + 7\mathbf{j} - 2\mathbf{k} + \mu(-\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})$$
 respectively. It is given that l_1 and l_2 intersect.

(i) Find the value of the constant a.

[3]

The point *P* has position vector $3\mathbf{i} + \mathbf{j} + 6\mathbf{k}$.

(ii) Find the perpendicular distance from P to the plane containing l_1 and l_2 . [4]

(iii) Find the perpendicular distance from P to l_2 . [4] 27 The lines l_1 and l_2 have equations $\mathbf{r} = 6\mathbf{i} + 2\mathbf{j} + 7\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j})$ and $\mathbf{r} = 4\mathbf{i} + 4\mathbf{j} + \mu(-6\mathbf{j} + \mathbf{k})$ respectively. The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . Find the position vectors of P and Q.

- 28 The line l_1 passes through the points A(-3, 1, 4) and B(-1, 5, 9). The line l_2 passes through the points C(-2, 6, 5) and D(-1, 7, 5).
 - (i) Find the shortest distance between the lines l_1 and l_2 . [5]

(ii) Find the acute angle between the line l_2 and the plane containing A,B and D.

[5]

- 29 The line l_1 passes through the point A with position vector $\mathbf{i} \mathbf{j} 2\mathbf{k}$ and is parallel to the vector $3\mathbf{i} 4\mathbf{j} 2\mathbf{k}$. The variable line l_2 passes through the point $(1 + 5\cos t)\mathbf{i} (1 + 5\sin t)\mathbf{j} 14\mathbf{k}$, where $0 \le t < 2\pi$, and is parallel to the vector $15\mathbf{i} + 8\mathbf{j} 3\mathbf{k}$. The points P and Q are on l_1 and l_2 respectively, and PQ is perpendicular to both l_1 and l_2 .
 - (i) Find the length of PQ in terms of t. [4]
 - (ii) Hence show that the lines l_1 and l_2 do not intersect, and find the maximum length of PQ as t varies. [3]
 - (iii) The plane Π_1 contains l_1 and PQ; the plane Π_2 contains l_2 and PQ. Find the angle between the planes Π_1 and Π_2 , correct to the nearest tenth of a degree. [4]

- 30 The line l_1 passes through the point A, whose position vector is $3\mathbf{i} 5\mathbf{j} 4\mathbf{k}$, and is parallel to the vector $3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$. The line l_2 passes through the point B, whose position vector is $2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$, and is parallel to the vector $\mathbf{i} \mathbf{j} 4\mathbf{k}$. The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . The plane Π_1 contains PQ and l_1 , and the plane Π_2 contains PQ and l_2 .
 - (i) Find the length of PQ. [4]
 - (ii) Find a vector perpendicular to Π_1 . [2]
 - (iii) Find the perpendicular distance from B to Π_1 . [3]
 - (iv) Find the angle between Π_1 and Π_2 . [3]

31 The planes Π_1 and Π_2 have vector equations

$$\mathbf{r} = \lambda_1(\mathbf{i} + \mathbf{j} - \mathbf{k}) + \mu_1(2\mathbf{i} - \mathbf{j} + \mathbf{k}) \qquad \text{and} \qquad \mathbf{r} = \lambda_2(\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \mu_2(3\mathbf{i} + \mathbf{j} - \mathbf{k})$$

respectively. The line l passes through the point with position vector $4\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$ and is parallel to both Π_1 and Π_2 . Find a vector equation for l.

Find also the shortest distance between l and the line of intersection of Π_1 and Π_2 . [4]

32 With *O* as origin, the points *A*, *B*, *C* have position vectors

$$i$$
, $i + j$, $i + j + 2k$

respectively. Find a vector equation of the common perpendicular of the lines AB and OC.

Show that the shortest distance between the lines AB and OC is $\frac{2}{5}\sqrt{5}$. [2]

Find, in the form ax + by + cz = d, an equation for the plane containing AB and the common perpendicular of the lines AB and OC. [3]

33 The points A, B and C have position vectors $2\mathbf{i}$, $3\mathbf{j}$ and $4\mathbf{k}$ respectively. Find a vector which is perpendicular to the plane Π_1 containing A, B and C.

The plane $\boldsymbol{\varPi_2}$ has equation

$$\mathbf{r} = \mathbf{i} + 4\mathbf{j} + 2\mathbf{k} + \lambda (\mathbf{i} - \mathbf{j}) + \mu (\mathbf{j} - \mathbf{k}).$$

Find the acute angle between the planes Π_1 and $\Pi_2.$

[5]

34 The plane Π_1 has equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \theta(2\mathbf{j} - \mathbf{k}) + \phi(3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}).$$

Find a vector normal to Π_1 and hence show that the equation of Π_1 can be written as 2x + 3y + 6z = 14. [4]

The line l has equation

$$\mathbf{r} = 3\mathbf{i} + 8\mathbf{j} + 2\mathbf{k} + t(4\mathbf{i} + 6\mathbf{j} + 5\mathbf{k}).$$

The point on l where $t = \lambda$ is denoted by P. Find the set of values of λ for which the perpendicular distance of P from Π_1 is not greater than 4. [4]

The plane Π_2 contains l and the point with position vector $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. Find the acute angle between Π_1 and Π_2 .

35 Relative to an origin O, the points A, B, C have position vectors

$$i$$
, $j + k$, $i + j + \theta k$,

respectively. The shortest distance between the lines AB and OC is $\frac{1}{\sqrt{2}}$. Find the value of θ . [6]

- 36 The plane Π_1 has equation $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 4\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + \mu(-\mathbf{i} + \mathbf{k})$. Obtain a cartesian equation of Π_1 in the form px + qy + rz = d. [4]
 - The plane Π_2 has equation $\mathbf{r} \cdot (\mathbf{i} 4\mathbf{j} + 5\mathbf{k}) = 12$. Find a vector equation of the line of intersection of Π_1 and Π_2 .

The line l passes through the point A with position vector $a\mathbf{i} + (2a+1)\mathbf{j} - 3\mathbf{k}$ and is parallel to $3c\mathbf{i} - 3\mathbf{j} + c\mathbf{k}$, where a and c are positive constants. Given that the perpendicular distance from A to Π_1 is $\frac{15}{\sqrt{6}}$ and that the acute angle between l and Π_1 is $\sin^{-1}\left(\frac{2}{\sqrt{6}}\right)$, find the values of a and c. [7]

37 The position vectors of points A, B, C, relative to the origin O, are \mathbf{a} , \mathbf{b} , \mathbf{c} , where

$$a = 3i + 2j - k$$
, $b = 4i - 3j + 2k$, $c = 3i - j - k$.

Find $\mathbf{a} \times \mathbf{b}$ and deduce the area of the triangle *OAB*.

[3]

Hence find the volume of the tetrahedron OABC, given that the volume of a tetrahedron is $\frac{1}{3} \times \text{area}$ of base \times perpendicular height. [2]

38 Find a cartesian equation of the plane Π containing the lines

$$\mathbf{r} = 3\mathbf{i} + \mathbf{k} + s(2\mathbf{i} + \mathbf{j} - \mathbf{k})$$
 and $\mathbf{r} = 3\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} + t(\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}).$ [4]

The line l passes through the point P with position vector $6\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and is parallel to the vector $2\mathbf{i} + \mathbf{j} - 4\mathbf{k}$. Find

- (i) the position vector of the point where l meets Π , [3]
- (ii) the perpendicular distance from P to Π , [3]
- (iii) the acute angle between l and Π . [3]

39 The plane Π has equation

$$\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + \mu(3\mathbf{i} + \mathbf{j} - 2\mathbf{k}).$$

The line l, which does not lie in Π , has equation

$$r = 3i + 6j + 12k + t(8i + 5j - 8k).$$

Show that l is parallel to Π .

[4]

Find the position vector of the point at which the line with equation $\mathbf{r} = 5\mathbf{i} - 4\mathbf{j} + 7\mathbf{k} + s(2\mathbf{i} - \mathbf{j} + \mathbf{k})$ meets Π .

Find the perpendicular distance from the point with position vector $9\mathbf{i} + 11\mathbf{j} + 2\mathbf{k}$ to l. [4]

40 The points \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} have position vectors $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $2\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ and $2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ respectively. Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

Deduce, in either order, the exact value of

- (i) the area of the triangle ABC,
- (ii) the perpendicular distance from C to AB.

[3]

- **41** The plane Π_1 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$. Find a cartesian equation of Π_1 . [3]
 - The plane Π_2 has equation 2x y + z = 10. Find the acute angle between Π_1 and Π_2 . [2]

Find an equation of the line of intersection of Π_1 and Π_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$. [5]

42 The points A, B, C have position vectors

$$4i + 5j + 6k$$
, $5i + 7j + 8k$, $2i + 6j + 4k$,

respectively, relative to the origin O. Find a cartesian equation of the plane ABC. [4]

The point D has position vector $6\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$. Find the coordinates of E, the point of intersection of the line OD with the plane ABC.

Find the acute angle between the line ED and the plane ABC. [3]

43	The line l_1 is parallel to the vector $\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$ and passes through the point A, whose position vector
	is $3\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$. The line l_2 is parallel to the vector $-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and passes through the point B,
	whose position vector is $-3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$. The point P on l_1 and the point Q on l_2 are such that PQ is
	perpendicular to both l_1 and l_2 . Find

(i) the length PQ, [5]

(ii) the cartesian equation of the plane Π containing PQ and l_2 , [4]

(iii) the perpendicular distance of A from Π . [3]

- The points A, B and C have position vectors \mathbf{i} , $2\mathbf{j}$ and $4\mathbf{k}$ respectively, relative to an origin O. The point N is the foot of the perpendicular from O to the plane ABC. The point P on the line-segment ON is such that $OP = \frac{3}{4}ON$. The line AP meets the plane OBC at Q. Find a vector perpendicular to the plane ABC and show that the length of ON is $\frac{4}{\sqrt{(21)}}$.
 - Find the position vector of the point Q. [5]
 - Show that the acute angle between the planes ABC and ABQ is $\cos^{-1}(\frac{2}{3})$. [5]

45 The lines l_1 and l_2 have equations

$$\mathbf{r} = 6\mathbf{i} - 3\mathbf{j} + s(3\mathbf{i} - 4\mathbf{j} - 2\mathbf{k})$$
 and $\mathbf{r} = 2\mathbf{i} - \mathbf{j} - 4\mathbf{k} + t(\mathbf{i} - 3\mathbf{j} - \mathbf{k})$

respectively. The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . Show that the position vector of P is $3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and find the position vector of Q. [7]

Find, in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$, an equation of the plane Π which passes through P and is perpendicular to l_1 .

The plane Π meets the plane $\mathbf{r} = p\mathbf{i} + q\mathbf{j}$ in the line l_3 . Find a vector equation of l_3 .

46 The plane Π_1 has equation

$$\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -4 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

(i) Find a cartesian equation of Π_1 .

[3]

The plane Π_2 has equation 3x + y - z = 3.

(ii) Find the acute angle between Π_1 and $\Pi_2,$ giving your answer in degrees.

[2]

(iii) Find an equation of the line of intersection of Π_1 and Π_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$. [5]

47 The position vectors of the points A, B, C, D are

$$\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$
, $3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$, $-\mathbf{i} + 3\mathbf{k}$, $m\mathbf{j} + 4\mathbf{k}$,

respectively, where m is a constant.

(i) Show that the lines AB and CD are parallel when $m = \frac{3}{2}$. [1]

(ii) Given that $m \neq \frac{3}{2}$, find the shortest distance between the lines AB and CD. [5]

(iii) When m = 2, find the acute angle between the planes ABC and ABD, giving your answer in

degrees.

[6]

48 With O as the origin, the points A, B, C have position vectors

$$\mathbf{i} - \mathbf{j}$$
, $2\mathbf{i} + \mathbf{j} + 7\mathbf{k}$, $\mathbf{i} - \mathbf{j} + \mathbf{k}$

respectively.

(i) Find the shortest distance between the lines OC and AB.

[5]

(ii) Find the cartesian equation of the plane containing the line OC and the common perpendicular

[4]

of the lines OC and \overline{AB} .

49 The points A, B, C have position vectors

$$-\mathbf{i}+\mathbf{j}+2\mathbf{k}$$
, $-2\mathbf{i}-\mathbf{j}$, $2\mathbf{i}+2\mathbf{k}$,

respectively, relative to the origin O.

(a) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [5]

(b)	Find the perpendicular distance from <i>O</i> to the plane <i>ABC</i> .	[2]
(c)	Find the acute angle between the planes <i>OAB</i> and <i>ABC</i> .	[4]

	50	The	points	A	B	Ch	ave	position	vector	S
--	-----------	-----	--------	---	---	----	-----	----------	--------	---

$$-2\mathbf{i}+2\mathbf{j}-\mathbf{k}$$
, $-2\mathbf{i}+\mathbf{j}+2\mathbf{k}$, $-2\mathbf{j}+\mathbf{k}$,

respectively, relative to the origin O.

(a) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [5]

(b) Find the acute angle between the planes *OBC* and *ABC*. [4]

TI . D	1	• , •	4	, •	•
The point <i>D</i>	ทลร	nosition	vector	<i>f</i> 1 –	- 1
The point D	Hus	position	V CCLOI	ιı	

(c) Given that the shortest distance between the lines AB and CD is $\sqrt{10}$, find the value of t. [6]

- 51 The lines l_1 and l_2 have equations $\mathbf{r} = 3\mathbf{i} + 3\mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} + 4\mathbf{k})$ and $\mathbf{r} = 3\mathbf{i} 5\mathbf{j} 6\mathbf{k} + \mu(5\mathbf{j} + 6\mathbf{k})$ respectively.
 - (a) Find the shortest distance between l_1 and l_2 . [5]

The	nlane Π	contains 1	and is	narallel to	the vector	i + k
THC	pranc 11	contains ι	and is	paranci to	the vector	1 K

(b) Find the equation of Π , giving your answer in the form ax + by + cz = d. [4]

(c) Find the acute angle between l_2 and Π .

[3]

52	The lines l_1 and l_2 have equations $\mathbf{r} = -5\mathbf{j} + \lambda(5\mathbf{i} + 2\mathbf{k})$ and $\mathbf{r} = 4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \mu(\mathbf{j} + \mathbf{k})$ respectively
	The plane Π contains l_1 and is parallel to l_2 .

(a) Find the equation of
$$\Pi$$
, giving your answer in the form $ax + by + cz = d$. [4]

(b) Find the distance between l_2 and Π .

[3]

The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 .

(c) Show that *P* has position vector $\frac{55}{27}\mathbf{i} - 5\mathbf{j} + \frac{22}{27}\mathbf{k}$ and state a vector equation for *PQ*. [8]

53	Let t	he a	nositive	constant.
JJ	Let ι	ue a	positive	constant.

The line l_1 passes through the point with position vector $t\mathbf{i} + \mathbf{j}$ and is parallel to the vector $-2\mathbf{i} - \mathbf{j}$. The line l_2 passes through the point with position vector $\mathbf{j} + t\mathbf{k}$ and is parallel to the vector $-2\mathbf{j} + \mathbf{k}$.

It is given that the shortest distance between the lines l_1 and l_2 is $\sqrt{21}$.

(a) Find the value of t. [5]

The plane Π_1 contains l_1 and is parallel to l_2 .

(b) Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. [1]

The plane Π .	, has Cartesian	equation	5x - 6y + 7z =	= 0.
-------------------	-----------------	----------	----------------	------

(c) Find the acute angle between l_2 and Π_2 . [3]

(d) Find the acute angle between Π_1 and Π_2 . [3]

54	The	lines	l_1	and	l_2	have	equations $= -\mathbf{i} -$	j 2 − k	$+s(2\mathbf{i}-3\mathbf{j})$	and	$\mathbf{r} = 3\mathbf{i} - 2$	$\mathbf{k} + t(3\mathbf{i} - \mathbf{j} - \mathbf{k})$	+3k)
	respe				_								

The plane Π_1 contains l_1 and the point P with position vector $-2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.

(a) Find an equation of
$$\Pi_1$$
, giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. [2]

The plane Π_2 contains l_2 and is parallel to l_1 .

(b) Find an equation of
$$\Pi_2$$
, giving your answer in the form $ax + by + cz = d$. [4]

(c)	Find the	acute	angle	between	Π_1	and	Π_2 .
-----	----------	-------	-------	---------	---------	-----	-----------

[5]

(d) The point Q is such that $\overrightarrow{OQ} = -5\overrightarrow{OP}$.

Find the position vector of the foot of the perpendicular from the point Q to Π_2 .

[4]

55 The points A, B, C have position vectors

$$4i-4j+k$$
, $-4i+3j-4k$, $4i-j-2k$,

respectively, relative to the origin O.

(a) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [5]

(b)	Find the perpendicular distance from <i>O</i> to the plane <i>ABC</i> .	[2]
(c)	The point <i>D</i> has position vector $2\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$.	
	Find the coordinates of the point of intersection of the line <i>OD</i> with the plane <i>ABC</i> .	[3]

The position vectors of the points A, B, C, D are

$$7\mathbf{i} + 4\mathbf{j} - \mathbf{k}$$
, $11\mathbf{i} + 3\mathbf{j}$, $2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$, $2\mathbf{i} + 7\mathbf{j} + \lambda\mathbf{k}$

respectively.

(a) Given that the shortest distance between the line AB and the line CD is 3, show that $\lambda^2 - 5\lambda + 4 = 0$. [7]

Let Π_1 be the plane ABD when $\lambda = 1$.

Let Π_2 be the plane ABD when $\lambda = 4$.

(b) (i) Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$. [2]

(ii) Find an equation of Π_2 , giving your answer in the form ax + by + cz = d. [4]

(c)	Find the acute angle between	Π_1	and	Π_2 .
-----	------------------------------	---------	-----	-----------

[5]

			• / > />
57	The plane II	has equation $\mathbf{r} = -2\mathbf{i} + 1$	$3\mathbf{j} + 3\mathbf{k} + \lambda(\mathbf{i} + \mathbf{k}) + \mu(2\mathbf{i} + 3\mathbf{j}).$
σ_{I}	The plane II	mus equation 21	$S_{\mathbf{I}} + S_{\mathbf{K}} + \mathcal{U}(\mathbf{I} + \mathbf{K}) + \mu(2\mathbf{I} + S_{\mathbf{I}}).$

(a) Find a Cartesian equation of Π , giving your answer in the form ax + by + cz = d. [4]

The line *l* passes through the point *P* with position vector $2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ and is parallel to the vector \mathbf{k} .

(b) Find the position vector of the point where l meets Π . [3]

	(c)	Find the acute angle between l and Π .	[3]
((d)	Find the perpendicular distance from P to Π .	[3]

58 The points A, B, C have position vect	tors
--	------

$$2\mathbf{i}+2\mathbf{j}$$
, $-\mathbf{j}+\mathbf{k}$ and $2\mathbf{i}+\mathbf{j}-7\mathbf{k}$

respectively, relative to the origin O.

(a) Find an equation of the plane
$$OAB$$
, giving your answer in the form $\mathbf{r.n} = p$. [3]

The plane Π has equation x-3y-2z=1.

(b) Find the perpendicular distance of
$$\Pi$$
 from the origin. [1]

(c)	Find the acute angle between the planes OAB and Π .	[3]
(J)	Find an amortion fourths are more and only to the lines OC and AD	F1.03
(u)	Find an equation for the common perpendicular to the lines OC and AB.	[10]

- 59 The plane Π contains the lines $\mathbf{r} = 3\mathbf{i} 2\mathbf{j} + \mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ and $\mathbf{r} = 4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} + \mu(3\mathbf{i} + 2\mathbf{j} \mathbf{k})$.
 - (a) Find a Cartesian equation of Π , giving your answer in the form ax + by + cz = d. [4]

The line <i>l</i> passes through the point <i>P</i> with position vector $2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and is parallel to the vector $\mathbf{j} + \mathbf{k}$						
(b) Find the acute angle between l and Π .	[3]					
	F 43					
(c) Find the position vector of the foot of the perpendicular from P to Π .	[4]					

60 The lines l_1 and l_2 have equations $\mathbf{r} = 2\mathbf{i} + \mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ and $\mathbf{r} = 2\mathbf{j} + 6\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})$ respectively.

The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 .

(a) Find the length PQ. [5]

The plane Π_1 contains PQ and l_1 .

The plane Π_2 contains PQ and l_2 .

- (b) (i) Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$. [1]
 - (ii) Find an equation of Π_2 , giving your answer in the form ax + by + cz = d. [4]

(c) Find the acute angle between Π_1 and Π_2 . [5]

- 61 The plane Π_1 has equation $r = -4\mathbf{j} 3\mathbf{k} + \lambda(\mathbf{i} \mathbf{j} + \mathbf{k}) + \mu(\mathbf{i} + \mathbf{j} \mathbf{k})$.
 - (a) Obtain an equation of Π_1 in the form px + qy + rz = d.

[4]

- **(b)** The plane Π_2 has equation $\mathbf{r} \cdot (-5\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}) = 4$.
 - Find a vector equation of the line of intersection of $\boldsymbol{\varPi}_1$ and $\boldsymbol{\varPi}_2.$

[4]

The line	l passes	through	the	point	\boldsymbol{A}	with	position	vector	$a\mathbf{i} + a\mathbf{j} + (a-7)\mathbf{k}$	and	is	parallel	to
(1-b)i+	$-b\mathbf{j}+b\mathbf{k}$	where a a	nd b	are po	sit	ive co	nstants.						

(c) Given that the perpendicular distance from A to Π_1 is $\sqrt{2}$, find the value of a. [2]

(d) Given that the obtuse angle between l and Π_1 is $\frac{3}{4}\pi$, find the exact value of b. [4]

62	The	points	A B	C	'have	position	vectors
02	1110	pomis	Λ, D	, c	mavc	position	VCCtOIS

$$i+j$$
, $-i+2j+4k$, $-2i+j+3k$,

respectively, relative to the origin O.

(a) Find the equation of the plane ABC, giving your answer in the form
$$ax + by + cz = d$$
. [5]

[2]

(c) Find a vector equation of the common perpendicular to the lines OC and AB.

[8]