AS Level Further Mathematics

Topic: Polar Coordinates 3D

Teacher:

Muhammad Shafiq ur Rehman Aitchison College Lahore 6 (a) Show that the curve with Cartesian equation

$$(x^2 + y^2)^2 = 36(x^2 - y^2)$$

has polar equation $r^2 = 36\cos 2\theta$.

[3]

The curve C has polar equation $r^2 = 36\cos 2\theta$, for $-\frac{1}{4}\pi \le \theta \le \frac{1}{4}\pi$.

(b) Sketch C and state the maximum distance of a point on C from the pole.

[3]

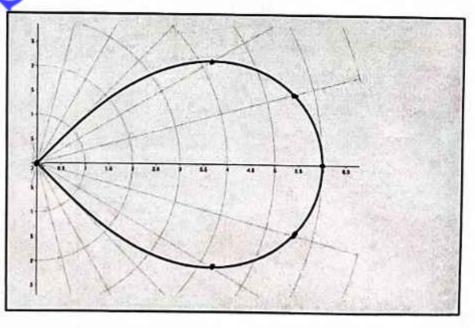
(c) Find the area of the region enclosed by C.

[2]

(d) Find the maximum distance of a point on C from the initial line, giving the answer in exact form.

[6]

O	7
- 7/4	0
- Ā	4.24
- Ā	5.58
0	6
3,	2.28
76	4.24
<u>7</u>	0



Area =
$$\frac{1}{2} \int_{a}^{b} \gamma^{2} da$$

= $\frac{1}{2} \int_{a}^{\frac{\pi}{4}} 36 \cos 2a da$
= $\frac{1}{2} \int_{a}^{\frac{\pi}{4}} 36 \cos 2a da$
= $\frac{1}{4} \int_{a}^{\frac{\pi}{4}} 36 \cos 2a da$

For maximum distance from intial line, put

Corno Co Sin 20 Sin 8 = 0

$$\theta = \pm \frac{\pi}{c}$$

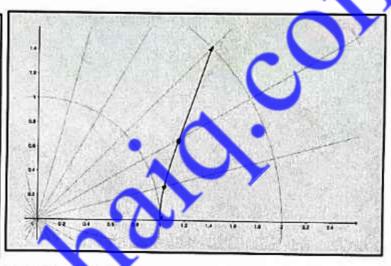
Maximum distance = $\sqrt{36 \cos \frac{\pi}{2}} \times \sin(\frac{\pi}{6})$

- 5 The curve C has polar equation $r = a \sec^2 \theta$, where a is a positive constant and $0 \le \theta \le \frac{1}{4}\pi$.
 - (a) Sketch C, stating the polar coordinates of the point of intersection of C with the initial line and also with the half-line $\theta = \frac{1}{4}\pi$. [3]
 - (b) Find the maximum distance of a point of C from the initial line.
 - (c) Find the area of the region enclosed by C, the initial line and the half-line $\theta = \frac{1}{4}\pi$. [4]
 - (d) Find, in the form y = f(x), the Cartesian equation of C.

171
131

[2]

0	~
0	a
X /2	1.070
<u>*</u>	1.33 a
<u> </u>	za



(b) For maximum distance from until line, put
$$\frac{dy}{ds} = 0$$
 $y = y \sin \theta$
 $= a \sin^2 \theta \sin \theta = a \sin \theta$
 $\cos^2 \theta + a \cos \theta +$

Q.3 May/June/P11+P12/2022

- The curve C has polar equation $r^2 = \tan^{-1}(\frac{1}{2}\theta)$, where $0 \le \theta \le 2$.
 - (a) Sketch C and state, in exact form, the greatest distance of a point on C from the pole.
 - (b) Find the exact value of the area of the region bounded by C and the half-line $\theta = 2$. [5]

Now consider the part of C where $0 \le \theta \le \frac{1}{2}\pi$.

(c) Show that, at the point furthest from the half-line $\theta = \frac{1}{2}\pi$,

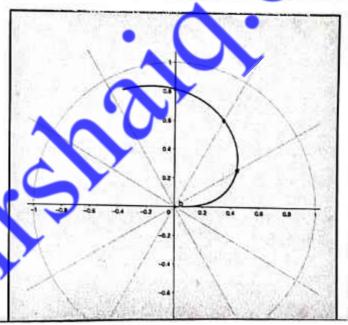
$$(\theta^2 + 4) \tan^{-1} \left(\frac{1}{2}\theta\right) \sin \theta - \cos \theta = 0$$

and verify that this equation has a root between 0.6 and 0.7.

[5]

[3]

0	Y	
0	0	
<u>_^</u> ^	0.51	N
<u>7</u>	0. 69	, <u>\$</u>
<u>x</u>	0 . 82	
2	0 89	



(b) Area =
$$\frac{1}{2} \left[\ln \ln \left(\frac{\partial}{2} \right) d\theta \right]$$
 using By parts

= $\frac{1}{2} \left[\left| \partial \left(\tan \left(\frac{\partial}{2} \right) \right) \right|^2 - \int_{0}^{2} \theta \cdot \frac{2}{\theta^{2} + 4} \right]$ and $\frac{1}{2} \tan^{2} x = \frac{1}{1 + x^{2}}$

= $\frac{1}{2} \left[\left| \partial \left(\tan \left(\frac{\partial}{2} \right) \right) \right|^2 - \left| \ln \left(\partial^{2} + 4 \right) \right|^2 \right]$

= $\frac{1}{2} \left[\left(2 \tan^{2} \left(1 \right) - 0 \right) - \left(\ln 8 - \ln 4 \right) \right]$

= $\frac{1}{2} \left[\left(\frac{2}{2} - \ln 8 \right) \right] = \frac{2}{2} - \frac{1}{2} \ln 2$

The point furthest from half line &= = (C) put dx = 0 x = (tan (0) 1/2 Coso - (lan'(2)) sino + Goso . 1 2 1/tan's. - Sind / [an (2) + Gost (4+01) / [an-1(2) - (02+4) tan (2) Sin 0 + Coso =0 (02+4) [au (2) Sino - Go det f(0) = (0+4) tai 2) 5md - Coso f(0.6) = -0.100

This shows that root hie between 0.6 and 0.7

Q.4 May/June/P13/2022

6 The curve C has Cartesian equation $x^2 + xy + y^2 = a$, where a is a positive constant.

- (a) Show that the polar equation of C is $r^2 = \frac{2a}{2 + \sin 2\theta}$. [3]
- (b) Sketch the part of C for $0 \le \theta \le \frac{1}{4}\pi$. [2]

The region R is enclosed by this part of C, the initial line and the half-line $\theta = \frac{1}{4}\pi$.

(c) It is given that $\sin 2\theta$ may be expressed as $\frac{2\tan \theta}{1+\tan^2 \theta}$. Use this result to show that the area of R is

$$\frac{1}{2}a\int_0^{\frac{1}{4}\pi}\frac{1+\tan^2\theta}{1+\tan\theta+\tan^2\theta}d\theta$$

and use the substitution $t = \tan \theta$ to find the exact value of this area.

[8]

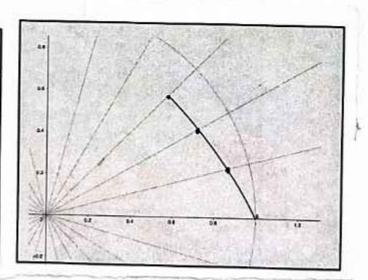
$$x^{2} + xy + y^{2} = a$$

$$x^{2} + y^{2} + xy = a$$

$$x^{2} + y^{2} + y^{2} + xy = a$$

$$x^{2} + y^{$$

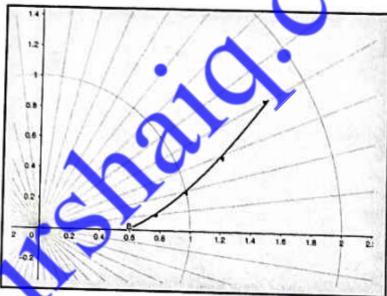
0	7
P	a
72 72	0.9 a
<u>*</u>	o.84a
4	0.82 &



Q.5 May/June/P11+P12/2021

- 5 The curve C has polar equation $r = a \cot(\frac{1}{3}\pi \theta)$, where a is a positive constant and $0 \le \theta \le \frac{1}{6}\pi$. It is given that the greatest distance of a point on C from the pole is $2\sqrt{3}$.
 - (a) Sketch C and show that a = 2. [3]
 - (b) Find the exact value of the area of the region bounded by C, the initial line and the half-line $\theta = \frac{1}{6}\pi$.
 - (c) Show that C has Cartesian equation $2(x+y\sqrt{3}) = (x\sqrt{3}-y)\sqrt{x^2+y^2}$.

O	~	
0	0.58a	
<u> </u>	e-774	
Š	a	
<u>F</u>	1.3 a	
<u>*</u>	1.730	



(b) Area =
$$\frac{1}{3} \left(\frac{\overline{6}}{6} + \operatorname{Gat}^{2} \left(\frac{\overline{5}}{3} - 0 \right) d\theta \right)$$

= $2 \int_{0}^{\overline{5}/6} \left(\operatorname{Gosec}^{2} \left(\frac{\overline{5}}{3} - 0 \right) - 1 \right) d\theta$ as $1 + \operatorname{Gat}^{2} = \operatorname{Gosec}^{2} \theta$
= $2 \left[\operatorname{Gat} \left(\frac{\overline{5}}{3} - 0 \right) - 0 \right]_{0}^{\overline{5}/6}$
= $2 \left[\left(\sqrt{3} - \frac{\overline{6}}{6} \right) - \frac{1}{\sqrt{3}} \right]$
= $2 \sqrt{3} - \frac{1}{\sqrt{3}} - \frac{\overline{5}}{3} = \frac{4}{\sqrt{3}} - \frac{\overline{5}}{3}$

(C)
$$\gamma = \frac{2}{\overline{\lim}(\frac{\pi}{3} - \theta)}$$

$$= \frac{2}{3}\frac{Gr(\overline{N}_3 - \theta)}{Sin(\frac{\pi}{3} - \theta)}$$

$$= 2 \quad Gr(\overline{N}_3 - \theta)$$

$$= 2 \quad Gr$$

$$\sqrt{x^{2}+y^{2}} = \frac{2(x+y\sqrt{3})}{(x+3-j)}$$

Q.6 May/June/P13/2021

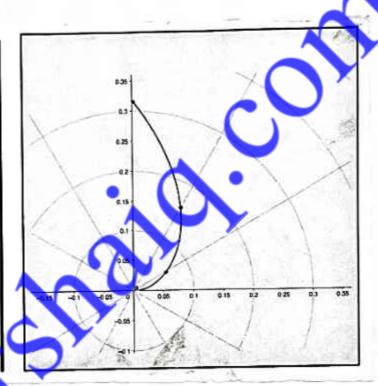
5 The curve C has polar equation $r = \frac{1}{\pi - \theta} - \frac{1}{\pi}$, where $0 \le \theta \le \frac{1}{2}\pi$.

(a) 'Sketch C.

[3]

(b) Show that the area of the region bounded by the half-line $\theta = \frac{1}{2}\pi$ and C is $\frac{3-4\ln 2}{4\pi}$. [6]

0	γ
0	0
<u>_^</u> ^	0-063
<u>**</u>	0-159
<u>x</u>	0.318



(b) Area =
$$\frac{1}{2} \int_{0}^{\sqrt{1/2}} \left(\frac{1}{\sqrt{x-4}} - \frac{1}{\sqrt{x}}\right)^{2} d\theta$$

= $\frac{1}{2} \int_{0}^{\sqrt{1/2}} \left(\frac{1}{\sqrt{x-6}}\right)^{2} - \frac{2}{\sqrt{x}} \int_{0}^{\sqrt{x-6}} d\theta + \frac{1}{\sqrt{x}} \int_{0}^{\sqrt{x}} d\theta$
= $\frac{1}{2} \left[\frac{1}{\sqrt{x-6}} + \frac{2}{\sqrt{x}} \ln (\sqrt{x-6}) + \frac{2}{\sqrt{x}} \int_{0}^{\sqrt{x}} d\theta + \frac{1}{\sqrt{x}} \int_{0}^{\sqrt{x}} d\theta$
= $\frac{1}{2} \left[\frac{1}{\sqrt{x}} + \frac{2}{\sqrt{x}} \ln \frac{x}{2} + \frac{1}{\sqrt{x}} - \left(\frac{1}{\sqrt{x}} + \frac{2}{\sqrt{x}} \ln x\right)\right]$
= $\frac{1}{2} \left[\frac{2}{\sqrt{x}} + \frac{2}{\sqrt{x}} \ln \frac{1}{2}\right] = \frac{3}{4\sqrt{x}} - \frac{1}{\sqrt{x}} \ln x = \frac{3-4 \ln x}{4\sqrt{x}}$

Q.7 Oct/Nov/P11+P13/2021

- 6 The curve C has polar equation $r = 2\cos\theta(1+\sin\theta)$, for $0 \le \theta \le \frac{1}{2}\pi$.
 - (a) Find the polar coordinates of the point on C that is furthest from the pole.

[5]

(b) Sketch C.

[2]

(c) Find the area of the region bounded by C and the initial line, giving your answer in exact form. [6]

(a) For the point that is furthest from pole, put
$$\frac{dY}{d\theta} = 0$$

$$Y = \lambda \operatorname{Grod}(1+\operatorname{Sino})$$

$$\frac{dY}{d\theta} = \lambda \operatorname{Grod}(\operatorname{Grod}) + \lambda (1+\operatorname{Sino})(-\operatorname{Sino})$$

$$= \lambda \operatorname{Grod} - \lambda \operatorname{Sino} - \lambda \operatorname{Sino}$$

$$= \lambda \left[1-\operatorname{Sino} - \lambda \operatorname{Sino}\right]$$

$$= \lambda \left[1-\operatorname{Sino} - \lambda \operatorname{Sino}\right]$$

$$= \lambda \left[1-\operatorname{Sino} - \lambda \operatorname{Sino}\right]$$

$$= \lambda \operatorname{Grod} - \lambda \operatorname{Sino} = 0$$

$$1-\operatorname{Sino} - \lambda \operatorname{Sino} = 0$$

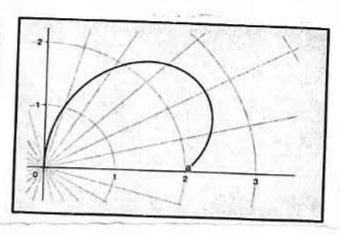
$$1-\operatorname{Sino} - \lambda \operatorname{Sino} = 0$$

$$0 = \lambda \operatorname{Grod} = 0$$

$$0 = \lambda \operatorname{Gro$$

 $\left(\begin{array}{c}3\overline{12},\overline{A}\end{array}\right)$

	0	7
	0	2
	¥	2.43
1	Ŧ	2.6
	7	2. 41
	Ą	1-87
	5 K 12 K 14	1.01
	*	0

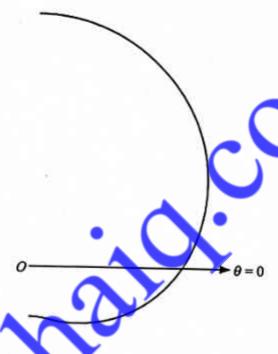


Area =
$$\frac{1}{2} \int_{0}^{R_{1}} Y^{2} d\theta$$

= $\frac{1}{2} \int_{0}^{R_{1}} Y^{2} d\theta$
= $\frac{1}{2} \int_{0}^{R_{1}} Y^{2} d\theta$
= $\frac{1}{2} \int_{0}^{R_{1}} G^{2} \theta \left(1 + \theta dm\theta + dm^{2}\theta\right) d\theta$
= $\frac{1}{2} \int_{0}^{R_{1}} G^{2} \theta + \theta dm^{2}\theta + dm^{2}\theta d\theta + dm^$

- 5 The curve C has polar equation $r = 3 + 2\sin\theta$, for $-\pi < \theta \le \pi$.
 - (a) The diagram shows part of C. Sketch the rest of C on the diagram.

[1]

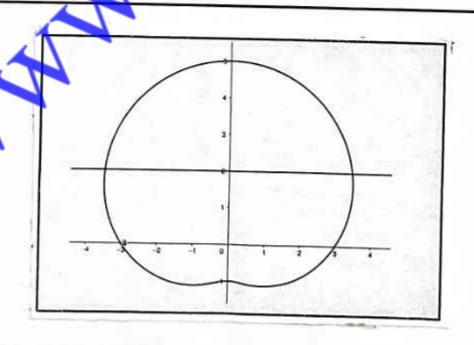


The straight line I has polar equation $r \sin \theta = 2$.

- (b) Add I to the diagram in part (a) and find the polar coordinates of the points of intersection of C and I.
 [5]
- (c) The region R is enclosed by C and I, and contains the pole.

Find the area of R. giving your answer in exact form.

[6]



$$R = 2 \times \frac{1}{2} \int_{0}^{\sqrt{n}/6} (3 + 2 \sin \theta)^{2} d\theta + are \sin \theta = 1 \text{ for triangle}$$

Q.9 May/June/P11+P12/2020

- 7 The curve C_1 has polar equation $r = \theta \cos \theta$, for $0 \le \theta \le \frac{1}{2}\pi$.
 - (a) The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P. Show that, at P,

$$2\theta \tan \theta - 1 = 0$$

and verify that this equation has a root between 0.6 and 0.7.

[5]

The curve C_2 has polar equation $r = \theta \sin \theta$, for $0 \le \theta \le \frac{1}{2}\pi$. The curves C_1 and C_2 intersect at the pole, denoted by O_1 , and at another point Q_2 .

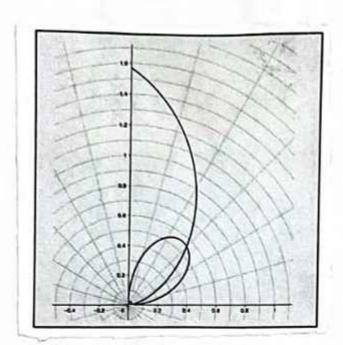
(b) Find the polar coordinates of Q, giving your answers in exact form.

[2]

(c) Sketch C, and C2 on the same diagram.

[3]

- (d) Find, in terms of π , the area of the region bounded by the arc OQ of C_1 and the arc OQ of C_2 . [7]
- Furthest point from in line to 2 (A) x = 14000 x = 04000 Cost Sind and 20 Lano -1=0 f(0) = 20 tano -1 f(06) = -0.179 } This Shows That f(0.7) = 0.179 } Tout he between 0.6 md 0.7 Y = & Gosa 6 7 = 0 Si a OSmil = O Cosa $tanw = 1 = 7 \theta = \frac{7}{9}$ $Y = \frac{K}{4} Gos(\frac{K}{4}) = \frac{K}{4\sqrt{2}}$ (1/2 / 5)



(d) Area =
$$\frac{1}{2} \int_{0}^{\sqrt{N}/4} d^{2} \cos \theta d\theta - \frac{1}{2} \int_{0}^{\sqrt{N}/4} d^{2} \sin^{2} \theta d\theta$$

= $\frac{1}{2} \int_{0}^{\sqrt{N}/4} d^{2} \cos \theta d\theta$

= $\frac{1}{2} \int_{0}^{\sqrt{N}/4} d^{2} \cos \theta d\theta$

= $\frac{1}{2} \left[\left[\frac{1}{\sqrt{N}} d^{2} \cos \theta - \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} \cos \theta \right] - \frac{1}{\sqrt{N}} \frac{1}{\sqrt{N}} \cos \theta d\theta \right]$

= $\frac{1}{2} \left[\left(\frac{\sqrt{N}}{\sqrt{N}} d^{2} - \frac{1}{\sqrt{N}} \cos \theta \right) - \left[\left[\frac{\sqrt{N}}{\sqrt{N}} d^{2} - \frac{\sqrt{N}}{\sqrt{N}} \cos \theta \right] \right]$

= $\frac{1}{2} \left[\left(\frac{\sqrt{N}}{\sqrt{N}} d^{2} - \frac{1}{\sqrt{N}} \cos \theta \right) - \frac{1}{2} \left[\frac{\sqrt{N}}{\sqrt{N}} \cos \theta \right] \right]$

= $\frac{1}{2} \left[\frac{\sqrt{N}}{\sqrt{N}} d^{2} + \left(\frac{\sqrt{N}}{\sqrt{N}} \cos \theta \right) - \frac{1}{2} \left[\frac{\sqrt{N}}{\sqrt{N}} \cos \theta \right] \right]$

= $\frac{1}{2} \left[\frac{\sqrt{N}}{\sqrt{N}} d^{2} + \left(\frac{\sqrt{N}}{\sqrt{N}} \cos \theta \right) - \frac{1}{2} \left[\frac{\sqrt{N}}{\sqrt{N}} \cos \theta \right] \right]$

Q.12 May/June/P11+P12/2019

The curve C_1 has polar equation $r^2 = 2\theta$, for $0 \le \theta \le \frac{1}{2}\pi$.

(i) The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P. Show that, at P,

$$2\theta \tan \theta = 1$$

and verify that this equation has a root between 0.6 and 0.7.

[5]

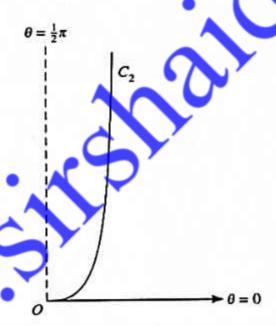
The curve C_2 has polar equation $r^2 = \theta \sec^2 \theta$, for $0 \le \theta < \frac{1}{2}\pi$. The curves C_1 and C_2 intersect at the pole, denoted by O, and at another point Q.

(ii) Find the exact value of θ at Q.

[2]

(iii) The diagram below shows the curve C_2 . Sketch C_1 on this diagram.

[2]



(iv) Find in exact form, the area of the region OPQ enclosed by C_1 and C_2 .

[5]

(i) For furthest from the line
$$\theta = \frac{1}{4}$$
, put $\frac{dx}{dv} = 0$

$$x = \sqrt{2} \theta^{1/4} Gr \theta$$

$$\frac{dx}{dv} = \sqrt{2} \left[(-\sin \theta) \int_{0}^{\infty} dx + Gr \theta \frac{1}{2\sqrt{4}} \right] = \sqrt{2} \left[\frac{-2\theta \sin \theta + Gr \theta}{2\sqrt{4}} \right]$$

put $\frac{dx}{d\theta} = 0$

$$-2\theta \sin \theta + Gr \theta = 0 \quad =) \quad -2\theta \sin \theta = -Gr \theta = 0 \quad 2\theta G \cos \theta = 1$$

(iv) Area =
$$\frac{1}{2} \int_{0}^{N_{14}} 20 \, d\omega - \frac{1}{2} \int_{0}^{N_{14}} \theta \operatorname{Secto} d\omega$$

= $\frac{1}{2} \int_{0}^{N_{14}} \theta (2 - \operatorname{Sect} \theta) \, d\omega$
= $\frac{1}{2} \left[|\theta (2 - \operatorname{Ians})|^{N_{14}} - \int_{0}^{N_{14}} (2 - \operatorname{Ians}) \, d\omega \right]$
= $\frac{1}{2} \left[|\theta (2 - \operatorname{Ians})|^{N_{14}} - |\theta + \operatorname{Ians}|^{N_{14}} \right]$
= $\frac{1}{2} \left[|\hat{A}(\hat{A} - 1)| - \left[(\frac{X^{\perp}}{16} + \ln \frac{1}{\sqrt{2}}) - 0 \right] \right]$
= $\frac{1}{2} \left[|\hat{A}(\hat{A} - 1)| - \left[(\frac{X^{\perp}}{16} + \ln \frac{1}{\sqrt{2}}) - 0 \right] \right]$
= $\frac{1}{2} \left[|\hat{A}(\hat{A} - 1)| - \left[(\frac{X^{\perp}}{16} + \ln \frac{1}{\sqrt{2}}) - 0 \right] \right]$

Q.12 May/June/P11+P12/2019

- 5 The curve C has polar equation $r = \ln(1 + \pi \theta)$, for $0 \le \theta \le \pi$.
 - (a) Sketch C and state the polar coordinates of the point of C furthest from the pole.

[3]

(b) Using the substitution $u = 1 + \pi - \theta$, or otherwise, show that the area of the region enclosed by C and the initial line is

$$\frac{1}{2}(1+\pi)\ln(1+\pi)(\ln(1+\pi)-2)+\pi$$
.

[6]

(c) Show that, at the point of C furthest from the initial line,

$$(1+\pi-\theta)\ln(1+\pi-\theta)-\tan\theta=0$$

and verify that this equation has a root between 1.2 and 1.3.

[5]

www.sirshalo.

2.11 000/100// 1117 1277 13/2020

7 (a) Show that the curve with Cartesian equation

$$(x^2 + y^2)^{\frac{1}{2}} = 4xy(x^2 - y^2)$$

has polar equation $r = \sin 4\theta$.

[4]

The curve C has polar equation $r = \sin 4\theta$, for $0 \le \theta \le \frac{1}{4}\pi$.

(b) Sketch C and state the equation of the line of symmetry.

[3]

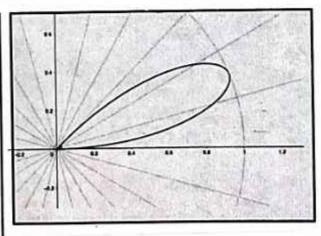
(c) Find the exact value of the area of the region enclosed by C.

[4

(d) Using the identity $\sin 4\theta \equiv 4 \sin \theta \cos^3 \theta - 4 \sin^3 \theta \cos \theta$, find the maximum distance of C from the line $\theta = \frac{1}{2}\pi$. Give your answer correct to 2 decimal places. [6]

(a) $(x^{2}+y^{2})^{\frac{5}{2}} = 4xy(x^{2}-y^{2})$ put $x^{2}+y^{2}-y^{2}$ S_{12} $(y^{2}) = 4(1600)(7500)[y^{2}-y^{2}-y^{2})$ $y^{5} = 4y^{2}500600(650-500)$ $y^{5} = 4y^{2}500600(650-500)$ y = 2(2500600)(6520) y = 350206020 = 50040 y = 50040

P	Y	
0	o	
K	•.81	
X.	0.87	
<u> </u>	0	



(c) Area =
$$\frac{1}{L} \int_{0}^{R/4} y^{2} dy$$

= $\frac{1}{L} \int_{0}^{R/4} \int_{0}^{R/4} y^{2} dy$

= $\frac{1}{L} \int_{0}^{R/4} \left(\frac{1 - \cos \theta}{L} \right) dy$

= $\frac{1}{L} \left[\left(\frac{1}{4} - 0 \right) - 0 \right] = \frac{1}{16}$

(d) For the measure distance from the land θ

put $\frac{1}{2} dx = 0$
 $x = (\sin 4\theta) \cos \theta$
 $x = (\sin 4\theta) \cos \theta$
 $x = (\sin 4\theta) \cos \theta$
 $x = (4 \sin \theta \cos^{3}\theta + 4 \sin^{3}\theta \cos^{3}\theta + 3 \sin^{3}\theta \cos^{3}\theta \cos^{3}\theta + 3 \sin^{3}\theta \cos^{3}\theta \cos^$

x = 0.93

- 5 The curve C has polar equation $r = a \tan \theta$, where a is a positive constant and $0 \le \theta \le \frac{1}{4}\pi$.
 - (a) Sketch C and state the greatest distance of a point on C from the pole.

[2]

(b) Find the exact value of the area of the region bounded by C and the half-line $\theta = \frac{1}{4}\pi$.

[4]

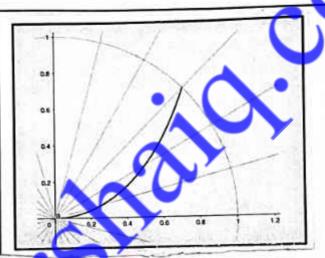
(c) Show that C has Cartesian equation $y = \frac{x^2}{\sqrt{a^2 - x^2}}$.

19

(d) Using your answer to part (b), deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx.$

[2]

0	~
o	0
X /2	0.270
7	0.58a
Ž	a



(b) Area =
$$\frac{1}{\lambda} \int_{0}^{\Lambda/4} a^{2} \left[a n^{2} a^{2} \right] da$$

$$= \frac{a^{2}}{\lambda} \int_{0}^{\Lambda/4} (sec \theta - 1) da$$

$$= \frac{a^{2}}{\lambda} \left[(ans - \theta) \right]_{0}^{\Lambda/4}$$

$$= \frac{a^{2}}{\lambda} \left[(1 - \frac{\Lambda}{4}) - 0 \right] = \frac{a^{2}}{\lambda} \left((1 - \frac{\Lambda}{4}) \right)$$

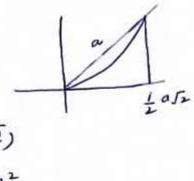
$$\int \frac{x^2}{\sqrt{a^2-x^2}} dx =$$

$$= \frac{1}{2} \cdot \left(\frac{1}{2}a\right) \cdot \left(a\frac{1}{2}\right) - \frac{a^{2}}{2} + \frac{a}{8}a^{2}$$

$$= \frac{a^2}{4} - \frac{a^2}{2} + \frac{\hat{s}}{8}a^2$$

$$= -\frac{\alpha^2}{4} + \frac{\sqrt{3}}{8} \alpha^2$$

$$= \frac{a}{4} \left(\frac{\bar{\Lambda}}{2} - 1 \right)$$

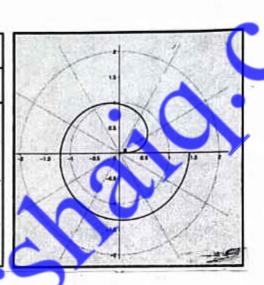


- The curve C has polar equation $r^2 = \ln(1 + \theta)$, for $0 \le \theta \le 2\pi$.
 - (i) Sketch C.

[2]

(ii) Using the substitution $u = 1 + \theta$, or otherwise, find the area of the region bounded by C and the initial line, leaving your answer in an exact form. [5]

0	0	
0		
7	0.97	
x	1.19	
弘	1.32	
2.1	1.41	



The curves C_1 and C_2 have polar equations, for $0 \le \theta \le \frac{1}{2}\pi$, as follows:

$$C_1: r = 2(e^{\theta} + e^{-\theta}),$$

 $C_2: r = e^{2\theta} - e^{-2\theta}.$

The curves intersect at the point P where $\theta = \alpha$.

- (i) Show that $e^{2\alpha} 2e^{\alpha} 1 = 0$. Hence find the exact value of α and show that the value of r at R is $4\sqrt{2}$.
- (ii) Sketch C₁ and C₂ on the same diagram.

[3]

(iii) Find the area of the region enclosed by C_1 , C_2 and the initial line, giving your answer correct to 3 significant figures. [5]

$$C_{1}: \quad \gamma = 2(e^{\theta} + e^{\theta})$$

$$C_{2}: \quad \gamma = e^{2\theta} - e^{2\theta}$$

$$e^{\alpha} - e^{-\alpha} = 2(e^{\alpha} + e^{\alpha})$$

$$(e^{\alpha})^{2} - (e^{\alpha})^{2} = 2(e^{\alpha} + e^{\alpha})$$

$$(e^{\alpha})^{2} - (e^{\alpha})^{2} = 2(e^{\alpha} + e^{\alpha})$$

$$e^{\alpha} - e^{\alpha} = 2$$

$$e^{\alpha} - e^{\alpha} = 2$$

$$e^{2\alpha} - 2e^{\alpha} - 1 = 0$$

$$e^{\alpha} = 1 + \sqrt{2} \quad \text{or} \quad e^{\alpha} = 1 - \sqrt{2} \left(\frac{1}{2} e^{-\alpha} e^{-\alpha} \right)$$

$$\alpha = \ln(1 + \sqrt{2})$$

$$\gamma = 2\left[e^{\ln(1 + \sqrt{2})} + \frac{1}{e^{\ln(1 + \sqrt{2})}} \right]$$

$$= 2\left[1 + \sqrt{2} + \frac{1 - \sqrt{2}}{-1} \right] = 2\left[1 + \sqrt{2} - 1 + \sqrt{2} \right] = 4\sqrt{2}$$

0	Υ	0	7
0	•	0	
£	4-14	Ą	ы
ž	4.56	¥.	2.5
Ę	2.1	-£	46
Š	4.4	¥	8
Ę	7.95	ř.	0.6

(iii) Area =
$$\frac{1}{2} \int_{0}^{1} 4 \left(e^{8} + e^{-8}\right)^{2} - \frac{1}{2} \left(e^{28} - e^{-28}\right)^{2} da$$

= $\frac{1}{2} \int_{0}^{1} 4 \left(e^{8} + e^{-8}\right)^{2} - \frac{1}{2} \left(e^{28} - e^{-28}\right)^{2} da$
= $\frac{1}{2} \int_{0}^{1} \frac{10^{2}}{2} \left(e^{28} + e^{-28}\right) - \frac{1}{2} \left(e^{28} + e^{-28}\right) da$
= $\int_{0}^{1} \frac{10^{2}}{2} \left(s + 2e^{28} + 2e^{-28} - \frac{1}{2}e^{-28}\right) da$
= $\left(s + 2e^{28} + 2e^{-28} - \frac{1}{2}e^{-48}\right) da$
= $\left(s + e^{28} - e^{-28} - \frac{1}{8}e^{48} + \frac{1}{8}e^{-48}\right) \ln(1+\sqrt{2})$
= $\left(s \ln(1+\sqrt{2}) + (1+\sqrt{2})^{2} - (1+\sqrt{2})^{2} - \frac{1}{8}(1+\sqrt{2})^{4} + \frac{1}{8}(1+\sqrt{2})^{4}\right) - \left(s + 1 - 1\right)^{2} - \frac{1}{8} + \frac{1}{8}$

Q.15 May/June/P11+P12/2018

- 3 The curve C has polar equation $r = \cos 2\theta$, for $-\frac{1}{4}\pi \le \theta \le \frac{1}{4}\pi$.
 - (i) Sketch C.

[2]

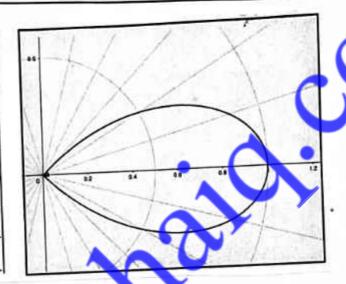
(ii) Find the area of the region enclosed by C, showing full working.

[3]

(iii) Find a cartesian equation of C.

[3]

0	~
- 1/4	0
- 1/4	0.5
- 1/12	73.0
0	1
X	0.87
<u>×</u>	0.5
-	0



(ii) Area =
$$\frac{1}{2} \int_{-\bar{r}/4}^{\bar{r}/4} C_0 d^2 d^4$$

= $\frac{1}{2} \int_{-\bar{r}/4}^{\bar{r}/4} \left(\frac{1 + C_0 + 0}{2} \right) d^3$
= $\frac{1}{4} \left(\frac{1}{4} + \frac{1$

Uni

$$\gamma = Gos^{2} O - Su^{2} O$$

$$\gamma = Gos^{2} O - Su^{2} O$$

$$\gamma^{3} = \gamma^{2} Gos^{2} O - \gamma^{2} Su^{2} O$$

$$(\chi^{2} + y^{2})^{3/2} = \chi^{2} - y^{2}$$

Q.16 May/June/P13/2018

8 The curves C_1 and C_2 have polar equations, for $0 \le \theta \le \pi$, as follows:

$$C_1$$
: $r = a$,
 C_2 : $r = 2a|\cos\theta|$,

where a is a positive constant. The curves intersect at the points P_1 and P_2 .

(i) Find the polar coordinates of P_1 and P_2 .

[2]

(ii) In a single diagram, sketch C_1 , C_2 and their line of symmetry.

[3]

(iii) The region R enclosed by C_1 and C_2 is bounded by the arcs OP_1 , P_1P_2 and P_2O , where O is the pole. Find the area of R, giving your answer in exact form.

(i)
$$C_1$$
: $\gamma = \alpha$

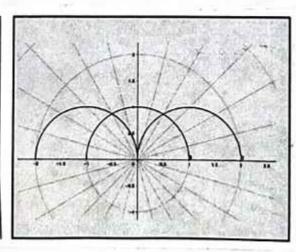
$$C_2$$
: $\gamma = 2\alpha |Good$

$$Q_{DQ} = \frac{1}{2}$$

$$Q = \frac{\bar{q}}{3}$$

ai 1

0 /	7	O	~
•	N	•	2
A.	1	T.	1.73
Ā	1	4	1
Ā	ı	Ŧ.	0
FQ.	1	子	î
ર્. મે	1	2,	1.73
Л	1	К	2



(iii) Area =
$$2 \times \frac{1}{2} \int_{\Lambda/3}^{\Lambda/4} (2a|G_{0}|)^{\frac{1}{2}} d\theta$$

= $4a^{\frac{1}{2}} \int_{\Lambda/3}^{\Lambda/4} (G_{0})^{\frac{1}{2}} d\theta$
= $4a^{\frac{1}{2}} \int_{\Lambda/3}^{\Lambda/4} (\frac{1+G_{0}|A}{2}) d\theta$
= $2a^{\frac{1}{2}} \left[\frac{1+G_{0}|A}{2} \right]_{\Lambda/3}^{\Lambda/2}$
= $a^{\frac{1}{2}} \left(\frac{1+G_{0}|A}{2} \right)_{\Lambda/3}^{\Lambda/2} - \frac{1+G_{0}|A}{2} \right]_{\Lambda/3}^{\Lambda/3}$
Required Axea = $\frac{1}{2} \int_{\Lambda/3}^{\Lambda/3} (-1+\frac{1}{2})^{\frac{1}{2}} d\theta$

Q.17 Oct/Nov/P11+P13/2018

9 The curve C has polar equation

$$r = 5\sqrt{\cot\theta}$$
,

where $0.01 \le \theta \le \frac{1}{2}\pi$.

(i) Find the area of the finite region bounded by C and the line $\theta = 0.01$, showing full working. Give your answer correct to 1 decimal place. [3]

Let P be the point on C where $\theta = 0.01$.

- (ii) Find the distance of P from the initial line, giving your answer correct to 1 decimal place. [2]
- (iii) Find the maximum distance of C from the initial line.

[3]

(iv) Sketch C.

(i')

[2]

O	r
0.01	5.
4	4-2
<u> </u>	4
ē	1
1	3 .8
\$ 12 \$ 12	2.5
Ę	0

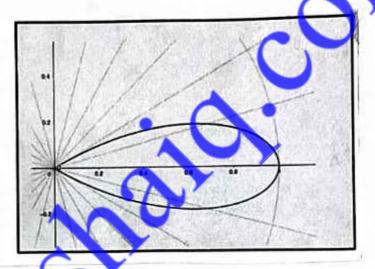
0				TENEST.	
由	XX	241	1777	HH	17
	對为	**	THI		
V V	54	111			÷

Q.18 Oct/Nov/P12/2018

- 3 The curve C has polar equation $r = a \cos 3\theta$, for $-\frac{1}{6}\pi \le \theta \le \frac{1}{6}\pi$, where a is a positive constant.
 - (i) Sketch C. [2]
 - (ii) Find the area of the region enclosed by C, showing full working.
- [3]
- (iii) Using the identity $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$, find a cartesian equation of C.

ii i

O	~
0	Ĭ.
X.	a·7
<u>R</u>	X.
- <u>Ā</u>	0.7
-4	0



(iii) Area =
$$\frac{1}{2} \int_{-\tilde{k}}^{\tilde{k}/6} a^{2} \cos 3 a da^{2}$$

$$= \frac{a^{2}}{4} \int_{-\tilde{k}/6}^{\tilde{k}/6} \left(\frac{1 + \cos 6a}{2} \right) da^{2}$$

$$= \frac{a^{2}}{4} \left[a + \frac{\sin 6a}{6} \right]_{-\tilde{k}/6}^{\tilde{k}/6}$$

$$= \frac{a^{2}}{4} \left[\left(\frac{\tilde{k}}{6} + 0 \right) - \left(-\frac{\tilde{k}}{6} + 0 \right) \right]$$

$$= \frac{a^{2}}{4} \times \frac{2\tilde{k}}{6}$$

$$= \tilde{k} a^{2}$$

(iii)

$$\gamma = a \cos 3\delta$$

$$= a \left[4 \cos^3 \alpha - 3 \cos \delta \right]$$

$$\gamma = a \cos \delta \left[4 \cos^3 \alpha - 3 \right]$$

$$\gamma = a \left(\frac{\gamma \cos \alpha}{\gamma} \right) \left[4 \frac{\gamma \cos^3 \alpha}{\gamma^2} - 3 \right]$$

$$\gamma = a \frac{\kappa}{\gamma} \left(4 \frac{\kappa^2}{\gamma^2} - 3 \right)$$

$$= \frac{a \kappa}{\gamma} \left[\frac{4 \kappa^2 - 3 \gamma^2}{\gamma^2} \right]$$

$$\gamma'' = a \kappa \left(4 \kappa^2 - 3 \gamma^2 \right)$$

$$\gamma'' = a \kappa \left(4 \kappa^2 - 3 \gamma^2 \right)$$

$$(\kappa' + \gamma'') = a \kappa \left[4 \kappa^2 - 3 (\kappa' + \gamma'') \right]$$

$$(\kappa' + \gamma'') = a \kappa \left(\kappa' - 3 \gamma' \right)$$

[4]

[4]

Q.19 May/June/P11+P12/2017

- 11 The curve C has polar equation $r = a(1 + \sin \theta)$ for $-\pi < \theta \le \pi$, where a is a positive constant.
 - (i) Sketch C. [2
 - (ii) Find the area of the region enclosed by C.
 - (iii) Show that the length of the arc of C from the pole to the point furthest from the pole is given by

$$s = (\sqrt{2})a \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \sqrt{(1+\sin\theta)} \,\mathrm{d}\theta.$$

(iv) Show that the substitution $u = 1 + \sin \theta$ reduces this integral for s to $(\sqrt{2})a$ $\sqrt{(2-u)}$ du. evaluate s.

o	7	
- A	· ·	
-3₽	0.3	
- <u>Ē</u>	0	
- ŧ	6.0	
•	1	
Ę	1.71	
ź	A	
3 (1.71	
7	1	

$$= \frac{a^{2}}{2} \int_{1}^{2} 1 + 2 \sin \alpha + \left(\frac{1 - 4 \sin 2 \alpha}{2} \right) d\alpha$$

$$= \frac{a^{2}}{2} \left[\frac{3}{2} - 2 \cos \alpha + \frac{d}{2} - \frac{\sin 2 \alpha}{4} \right]_{1}^{2}$$

$$= \frac{a^{2}}{2} \left[\frac{3}{2} - 2 \cos \alpha - \frac{\sin 2 \alpha}{4} \right]_{1}^{2}$$

$$= \frac{a^{2}}{2} \left[\frac{3}{2} - 2 \cos \alpha - \frac{3}{2} - 2 \cos \alpha \right]$$

$$= \frac{a^{2}}{2} \left[\frac{3}{2} + 2 + \frac{3}{2} - 2 \right] = \frac{3 \pi a^{2}}{2}$$

$$= \frac{3}{2} \left[\frac{3 \pi}{2} + 2 + \frac{3 \pi}{2} - 2 \right] = \frac{3 \pi a^{2}}{2}$$

(ii) Arec Are larger =
$$\int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{dr^{2}}\right)^{2}} dr$$

$$= \int_{-r_{f}}^{r_{f}} \sqrt{a^{2} \left(1 + 2\sin\theta + 2\sin^{2}\theta\right) + a^{2}\cos^{2}\theta} dr}$$

$$= \int_{-r_{f}}^{r_{f}} \sqrt{a^{2} \left(1 + 2\sin\theta + 2\sin^{2}\theta\right) dr}$$

$$= \int_{-r_{f}}^{r_{f}} \sqrt{a^{2} \left(1 + 2\cos\theta\right)} dr$$

$$= \int_{-r_{f}}^{r_{f}} \sqrt{a^{2} \left(1 + 2\cos\theta\right)} dr$$

$$= \int_{-r_{f}}^{r_{f}} \sqrt{a^{2} + 2\cos\theta} dr$$

$$= \int_{-r_{f}}^{r_{f}} \sqrt{$$

Q.21 Oct/Nov/P11+-P12+P13/2017

The polar equation of a curve C is $r = a(1 + \cos \theta)$ for $0 \le \theta < 2\pi$, where a is a positive constant.

- (i) Sketch C. [2]
- (ii) Show that the cartesian equation of C is

$$x^{2} + y^{2} = a(x + \sqrt{(x^{2} + y^{2})}).$$
 [2]

- (iii) Find the area of the sector of C between $\theta = 0$ and $\theta = \frac{1}{3}\pi$.
- (iv) Find the arc length of C between the point where $\theta = 0$ and the point where $\theta = \frac{1}{3}\pi$. [5]

