1. Trigonometric Ratios for Acute Angles

In a right-angled triangle:

- Sine (sin): $\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}$
- Cosine (cos): $\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}$
- Tangent (tan): $an(heta) = rac{ ext{opposite}}{ ext{adjacent}}$

Example:

If $heta=30^\circ$ and the hypotenuse = 10 cm, Find the opposite side. $\sin(30^\circ)=\frac{\mathrm{opposite}}{10}$

$$\frac{1}{2} = \frac{\text{opposite}}{10} \Rightarrow \text{opposite} = 5 \text{ cm}$$

2. Solving Problems Using Pythagoras and Trigonometry

Pythagoras' Theorem (for right-angled triangle):

$$a^2 + b^2 = c^2$$

Where c is the **hypotenuse**.

Example:

Find the hypotenuse if the other two sides are 6 cm and 8 cm:

$$c^2 = 6^2 + 8^2 = 36 + 64 = 100 \Rightarrow c = 10 \text{ cm}$$

Use trigonometry (sin, cos, tan) to find unknown sides or angles as shown above.

3. Shortest Distance from Point to Line

- The perpendicular distance from a point to a line is the shortest possible distance.
- It's the length of the segment from the point that meets the line at a right angle.

Example: In a triangle with a point above a horizontal line, drop a perpendicular from the point to the line to calculate shortest distance using trigonometry or geometry.

4. Angles of Elevation and Depression

- · Angle of Elevation: Looking upward from the horizontal.
- Angle of Depression: Looking downward from the horizontal.

Example (Elevation):

You stand 20 m from a building. The angle of elevation to the top is 40° .

Find the height of the building.

Use:

$$an(40^\circ) = rac{ ext{opposite}}{20} \ ext{opposite} = 20 imes an(40^\circ) pprox 20 imes 0.8391 = 16.8 \ ext{m}$$

Extra: Bearings

- Measured from the north, clockwise.
- Always given as 3 digits (e.g. 045° , 135° , 270°).

Example: If a ship sails on a bearing of 120° for 10 km, you can use trigonometry to find the eastward and southward distances.