SETS: NOTES & EXAMPLES

√ 1. Set Language and Notation

A set is a well-defined collection of distinct objects.

? Common Notations:

Symbo	l Meaning	Example
{}	A set	{2, 4, 6}
€	"is an element of"	4 ∈ {2, 4, 6}
∉	"is not an element of"	5 ∉ {2, 4, 6}
Ø	Empty set	$\emptyset = \{\}$
n(A)	Number of elements in set A	A If $A = \{1, 2, 3\}$, then $n(A) = 3$
A'	Complement of set A	Everything not in A
⊆	Subset	$\{1,2\} \subseteq \{1,2,3\}$
U	Union (either A or B or both) A ∪ B
\cap	Intersection (both A and B)	$A \cap B$

2. Types of Sets

Type	Description	Example
Finite	Countable number of elements	{1, 2, 3}
Infinite	Uncountable elements	$\{x\in\mathbb{N}:x>0\}$
Equal sets	Same elements	$\{1, 2, 3\} = \{3, 2, 1\}$
Subset	All elements of one set are in another	$\{1, 2\} \subseteq \{1, 2, 3\}$
Proper Subset	Subset but not equal	$\{1, 2\} \subset \{1, 2, 3\}$
Universal set (U)	All elements under consideration	U = {1,2,3,4,5,6}
Complement (A')	Elements in U not in A	If $A = \{1,2\}$, $A' = \{3,4,5,6\}$

3. Venn Diagrams

A **Venn diagram** visually represents sets and their relationships. Usually drawn with circles inside a rectangle (the **universal set**).

- Each circle = a set (e.g., A, B)
- Overlapping area = intersection
- Non-overlapping area = elements in one set only
- Outside all circles = elements not in any set (complement)

- 4. Examples

Example 1: Basic notation

Let

 $A = \{1, 2, 3, 4\}$

 $B = \{3, 4, 5, 6\}$

Find:

- $A \cup B = \{1, 2, 3, 4, 5, 6\}$
- $A \cap B = \{3, 4\}$
- A B = {1, 2} (in A but not in B)
- $\mathbf{B} \mathbf{A} = \{5, 6\}$

Example 2: Complement and Universal Set

Let

 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $A = \{2, 4, 6, 8\}$

Then

- A' = {1, 3, 5, 7} (everything in U not in A)
- n(U) = 8
- n(A) = 4
- n(A') = 4

Example 3: Three-set Venn Diagram

Let:

- A = students who like Math
- B = students who like Science
- C = students who like English

You can use a three-circle Venn diagram to show:

- Students who like all 3 subjects → A ∩ B ∩ C
- Students who like only Math → A ∩ B' ∩ C'
- Students who like Math and Science but not English \rightarrow $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C'}$

Q 5. Set Identities You Should Know

Identity

Meaning

 $A \cup \emptyset = A$ Union with empty set gives original set

 $A \cap \emptyset = \emptyset$ Nothing in common with empty set

Identity

Meaning

 $A \cup A = A$ Union with itself is itself

 $A \cap A = A$ Intersection with itself is itself

A U A' = U Set and its complement = universal set

 $A \cap A' = \emptyset$ No element common between a set and its complement

www.sirshafiq.com Contact at (03247304567)