1. Calculate Lengths of Similar Shapes

Definition: Two shapes are similar if they have the same shape but not necessarily the same size.

Corresponding angles are equal, and corresponding sides are in proportion.

Scale Factor (SF)

If two shapes are similar:

Length scale factor (k):

$$\frac{\text{Length of shape B}}{\text{Length of shape A}} = k$$

Example:

Triangle A and Triangle B are similar. A side in Triangle A is 4 cm, and the corresponding side in Triangle B is 10 cm.

- Scale factor from A to B = $rac{10}{4} = 2.5$
- If another side in A is 6 cm, the corresponding side in B = 6 imes 2.5 = 15 cm

🔷 2. Relationships Between Lengths, Areas, Surface Areas & Volumes

Lengths

If shapes are similar and scale factor = k,

Lengths are multiplied by k

Areas

Area scale factor = k^2

Volumes (and surface areas for 3D shapes)

Volume scale factor = k^3

$$rac{ ext{Area of B}}{ ext{Area of A}} = k^2, \quad rac{ ext{Volume of B}}{ ext{Volume of A}} = k^3$$

Example:

Two similar cylinders have a height ratio of 2:3.

- Area ratio = $2^2:3^2=4:9$
- Volume ratio = $2^3:3^3=8:27$

◆ 3. Solve Problems and Give Simple Explanations Involving Similarity

Example:

A small cube has a volume of 125 cm³. A similar larger cube has edges twice as long.

- Volume scale factor = $2^3=8$
- Volume of larger cube = 125 imes 8 = 1000 cm 3

4. Showing Two Triangles Are Similar (Geometric Reasons)

To show triangles are similar, use:

- AA (Angle-Angle): If two angles are equal
- SSS (Side-Side-Side): If all sides are in the same ratio
- SAS (Side-Angle-Side): If one angle is equal and the sides including the angle are in the same ratio

Example:

Triangle A has angles 40°, 60°, 80°,

Triangle B has angles 40°, 60°, 80° → Triangles are similar by AA

Summary Table

Property	Scale Factor (k)	Relation Formula
Length	k	$rac{ ext{Length B}}{ ext{Length A}} = k$
Area	k^2	$rac{ ext{Area B}}{ ext{Area A}} = k^2$
Volume	k^3	$rac{ ext{Volume B}}{ ext{Volume A}} = k^3$

Contact at (03247304567) www.sirshafiq.com