

Circle Theorems: Notes & Examples

1. Angle in a Semicircle = 90°

♦ Theorem:

Any triangle drawn from the diameter of a circle creates a right angle (90°) at the circumference.

Explanation:

If angle \angle ABC is subtended by a diameter AC, then \angle ABC = 90°.

Example:

- Given: AC is the diameter, and B lies on the circle.
- Find: ∠ABC
- Solution:

∠ABC = 90° (Angle in a semicircle)

2. Angle Between Tangent and Radius = 90°

♦ Theorem:

A tangent to a circle is perpendicular to the radius at the point of contact.

Explanation:

If O is the center, and a tangent touches the circle at point T, then $\angle OTX = 90^\circ$, where OT is the radius and TX is the tangent.

Example:

- Given: OT is a radius and TX is a tangent at T.
- Find: ∠OTX
- Solution:

∠OTX = 90° (Angle between radius and tangent)

3. Angle at the Centre is Twice the Angle at the Circumference

♦ Theorem:

The angle subtended by an arc at the centre is **twice** the angle subtended at the circumference.

Explanation:

If \angle AOC is the angle at the center and \angle ABC is at the circumference, then \angle AOC = 2 × \angle ABC.

Example:

- Given: ∠ABC = 30°
- Find: ∠AOC
- Solution:

 $\angle AOC = 2 \times 30^{\circ} = 60^{\circ}$ (Angle at centre is twice angle at circumference)

4. Angles in the Same Segment are Equal

♦ Theorem:

Angles subtended by the same arc (or chord) on the same side of the chord are equal.

Explanation:

If points A, B, C, and D lie on a circle such that arcs AC and AD subtend angles \angle ABC and \angle ADC respectively, then \angle ABC = \angle ADC.

Example:

- Given: ∠ABC = 40°, and angle ∠ADC is subtended by the same arc.
- Find: ∠ADC
- Solution:

∠ADC = 40° (Angles in the same segment)

5. Opposite Angles of a Cyclic Quadrilateral Sum to 180°

♦ Theorem:

In a cyclic quadrilateral (a quadrilateral inscribed in a circle), opposite angles add up to 180°.

Explanation:

If ABCD is a cyclic quadrilateral, then:

- ∠A + ∠C = 180°
- ∠B + ∠D = 180°

Example:

- Given: ∠A = 105°
- Find: ∠C
- Solution:

 $\angle C = 180^{\circ} - 105^{\circ} = 75^{\circ}$ (Opposite angles of cyclic quad)

6. Alternate Segment Theorem

♦ Theorem:

The angle between a tangent and a chord is equal to the angle in the alternate segment.

Explanation:

If a tangent touches the circle at point A and chord AB is drawn, the angle between the **tangent and chord AB** is equal to the angle in the opposite segment of the circle.

Example:

- Given: Angle between tangent and chord AB = 50°
- Find: Angle in alternate segment (e.g., ∠ACB)
- Solution:

∠ACB = 50° (Alternate segment theorem)

Tips for Solving Problems:

- Label the diagram clearly.
- Use a ruler and compass to construct accurate figures if needed.
- Write reasons for each angle using the correct theorem.
- Look for diameters, cyclic quadrilaterals, tangents, and equal arcs.

Circle Theorems II – Notes and Examples

Symmetry Properties of Circles

1. Equal Chords are Equidistant from the Centre

- **Meaning**: If two chords in a circle are the same length, they are the same distance from the centre of the circle.
- Visual Clue: Chords look like mirror images across a line through the centre.
- Reason to Use in Proofs: "Equal chords are equidistant from the centre."
- Example:

In a circle with chords AB and CD, if AB = CD, then the perpendicular distances from the centre to AB and CD are equal.

2. The Perpendicular Bisector of a Chord Passes Through the Centre

Meaning: If you draw a perpendicular line through the midpoint of any chord, it will go through the
centre of the circle.

Useful for:

- Locating the centre of a circle.
- Proving points lie on the same circle (circle construction).
- Reason to Use in Proofs: "The perpendicular bisector of a chord passes through the centre."
- Example:

In triangle ABC, if D is the midpoint of chord AB and line OD is perpendicular to AB, then line OD passes through the centre O.

3. Tangents from an External Point are Equal in Length

Meaning: If you draw two tangents from the same point outside a circle, the segments from that
point to where they touch the circle are equal.

Used to Prove:

- Triangles formed are congruent.
- Tangent segments have equal lengths.
- Reason to Use in Proofs: "Tangents from an external point are equal."
- Example:

From a point P outside a circle, tangents PA and PB touch the circle at A and B. Then, PA = PB.

A • · · · •

Quick Practice Questions

- 1. In a circle, chords AB and CD are equal. Prove that the distances from the centre to AB and CD are equal.
 - ➤ Use: "Equal chords are equidistant from the centre."
- 2. A chord AB is bisected by line OC, and OC is perpendicular to AB. What can you say about point O?
 - ➤ Use: "The perpendicular bisector of a chord passes through the centre."
- 3. From an external point P, tangents PA and PB are drawn to a circle. Prove triangle PAB is isosceles.
 - Use: "Tangents from an external point are equal."