1. Linear Functions

General form:

y = ax + b or rearranged from: ax + by = c

Key features:

- Straight line graph
- Gradient = a
- y-intercept = b

Example:

$$y = 2x + 1$$

- Gradient: 2 → Line rises 2 units for every 1 unit across
- y-intercept: 1 → Crosses y-axis at (0, 1)

Sketch steps:

- 1. Plot y-intercept: (0, 1)
- 2. Use gradient to find another point: e.g., (1, 3)
- 3. Draw a straight line

2. Quadratic Functions

General form:

$$y = ax^2 + bx + c$$

Key features:

- Parabola (U-shaped or ∩-shaped)
- Turning point: vertex (minimum if a>0, maximum if a<0)
- Axis of symmetry: vertical line through the turning point
- Roots: x-values where y=0

Finding the turning point (by completing the square):

$$y = ax^2 + bx + c = a(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a}$$

Example:

$$y = x^2 - 4x + 3$$

Completing the square:

$$y=(x-2)^2-1$$
 $ightarrow$ Turning point: (2, -1), Axis of symmetry: $x=2$, Roots: Solve $x^2-4x+3=0$ $ightarrow$ $x=1,3$

Sketch steps:

- 1. Plot turning point
- 2. Plot roots (x-intercepts)
- 3. Plot y-intercept (c=3)
- 4. Draw a smooth curve

3. Cubic Functions

General forms:

- $y = ax^3 + b$
- $y = ax^3 + bx^2 + cx + d$

Key features:

- May have 1 or 3 real roots
- May have a turning point or two turning points
- Odd symmetry (if centered at origin or turning point)

Example:

$$y = x^3 - 3x$$

- Factor: $y = x(x^2 3) \rightarrow \text{Roots: } x = 0, \sqrt{3}, -\sqrt{3}$
- · Turning points by differentiation or plotting

Sketch steps:

- 1. Find and plot roots
- 2. Estimate turning points (or find them using calculus if required)
- 3. Sketch with correct shape

4. Reciprocal Functions

General form:

$$y = \frac{a}{x} + b$$

Key features:

- Two branches
- Vertical asymptote: x = 0 (graph never touches x = 0)
- Horizontal asymptote: y = b
- · Decreasing in one quadrant, increasing in the other

Example:

$$y = \frac{2}{x}$$

Sketch steps:

- 1. Mark asymptotes: x = 0, y = 0
- 2. Plot points for positive and negative x values
- 3. Sketch smooth hyperbola in opposite quadrants

5. Exponential Functions

General form:

$$y=ar^x+b$$
, where $r>0$

Key features:

- Curve rises (if r>1) or decays (if 0 < r < 1)
- Horizontal asymptote: y = b
- No x-intercepts if b>0

Example:

$$y=2^x$$

- Rapidly increases for positive x
- Approaches 0 for negative x

Sketch steps:

1. Plot basic values (e.g., x = -2, -1, 0, 1, 2)

2. Mark horizontal asymptote: y=0

3. Sketch smooth curve

Summary Table

Function Type	Shape	Key Features
Linear	Straight line	Gradient and intercept
Quadratic	Parabola	Turning point, symmetry, roots
Cubic	S-curve	Up to 3 roots, turning points
Reciprocal	Two branches	Asymptotes, undefined at $x = 0$
Exponential	Rapid rise or decay	Horizontal asymptote, always positive