Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/21

Paper 2 (Extended)

October/November 2022

1 hour 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 70.
- The number of marks for each question or part question is shown in brackets [].

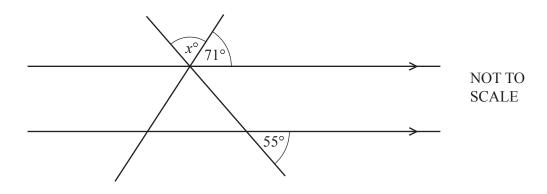
This document has 12 pages. Any blank pages are indicated.

2

1	Write down a	common	multiple	of 18	and 24.

Г17
 [I]

2 A train journey starts at 23 40 and finishes at 06 50.


Work out the time taken for this journey.

Write 32 cm as a fraction of 2 m. Give your answer in its simplest form.

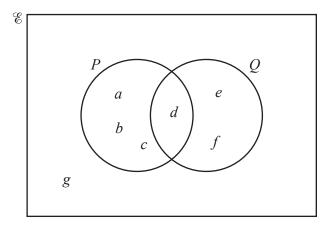
[2]
 [2]

4 Divide \$200 in the ratio 7:3.

5

The diagram shows two straight lines intersecting two parallel lines.

Find the value of x.


$$x = \dots [2]$$

6	The price of a computer is \$520.
	This price is reduced by 15% in a sale.

Work out the sale price.

\$[2]

7

The Venn diagram shows the elements of the sets \mathscr{E} , P and Q.

Complete the statements.

(a)
$$P = \{ \dots \}$$

(b)
$$n(P \cup Q) = \dots$$
 [1]

8 (a) 3, 9, 27, 81, ...

Write down the next term in this sequence.

.....[1]

(b) 13, 17, 21, 25, ...

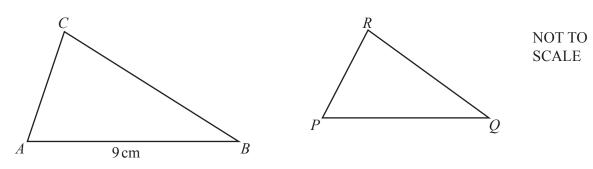
Find the *n*th term of this sequence.

.....[2]

4

9	Without using a calculator, work out	1+	5
	Without using a carculator, work out	3 '	6

You must show all your working and give your answer as a mixed number in its simplest form.


10 Simplify $18x^{18} \div 9x^9$.

11 Solve the simultaneous equations.

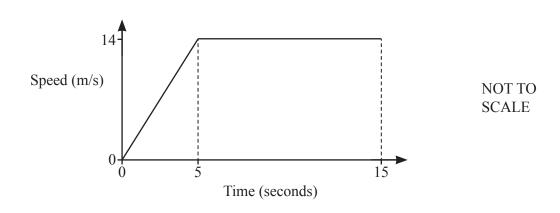
$$\begin{aligned}
x - 3y &= 7 \\
2x - 3y &= 11
\end{aligned}$$

$$x = \dots$$

$$y = \dots$$
 [2]

Triangle *PQR* is similar to triangle *ABC* with $\frac{PR}{AC} = \frac{2}{3}$.

AB = 9 cm and the area of triangle ABC is 18 cm^2 .


(a) Find the length of PQ.

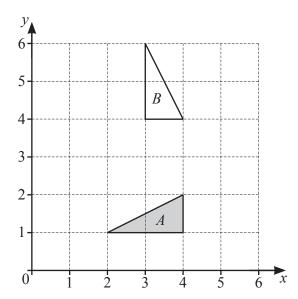
	cm	[1]
• • • • • • • • • • • • • • • • • • • •	CIII	[+]

(b) Find the area of triangle PQR.

C1	m^2 [2]
----	----------	---

13

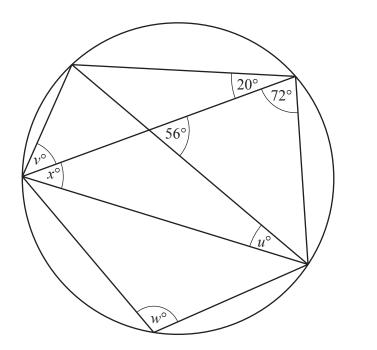
The diagram shows the speed–time graph of the first 15 seconds of a car journey.


(a) Find the acceleration of the car during the first 5 seconds.

(b) Find the distance travelled during the 15 seconds.

..... m [2]

14

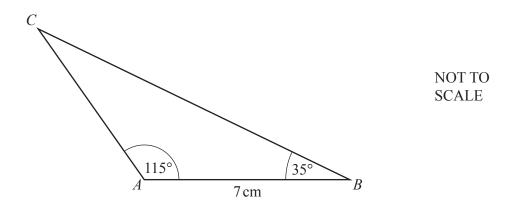

Describe fully the single transformation that maps triangle A onto triangle B .

15 The perimeter of a sector of a circle with radius 8 cm is 26 cm.

Calculate the angle of this sector.

.....[3]

16


NOT TO SCALE

The diagram shows a circle and eight chords.

Calculate the values of u, v, w and x.

u –	
v =	
w =	
x =	 [4]

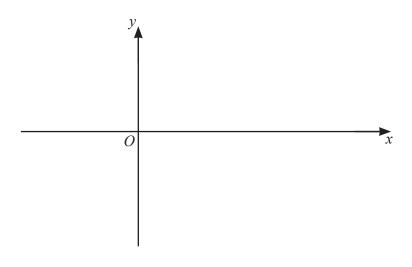
17 Simplify $(3125x^{3125})^{\frac{1}{5}}$.

Calculate the length BC.

$$BC = \dots$$
 cm [4]

19 Expand and simplify.

$$(2x+3)(x-2)^2$$


20 Factorise completely.

(a)
$$1 + x - y - xy$$

(b)
$$2x^3 - 18xy^2$$

21 The graph of a cubic function has two turning points. When x < 0 and when x > 4 the gradient of the graph is positive. When 0 < x < 4 the gradient of the graph is negative. The graph passes through the origin.

Sketch the graph.

[2]

22

- (a) On the diagram, sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$. [2]
- **(b)** Solve the equation $\cos x = -\frac{1}{2}$ for $0^{\circ} \le x \le 360^{\circ}$.

$$x = \dots$$
 or $x = \dots$ [2]

10

23	y is inversely proportional to \sqrt{x} and x is directly proportional to w^2 . When $w = 12$, $y = 12$.
	Find y in terms of w .
	$y = \dots [3]$
24	Violet and Wilfred recorded their times to run 200 m, correct to the nearest second. Violet took 36 seconds and Wilfred took 39 seconds.
	Work out the upper bound of the difference between their times.
	s [2]

© UCLES 2022 0580/21/O/N/22

11

25	A ba	ag co	ntains 5 red balls, 4 blue balls and 3 green balls.	
	(a)	(i)	Megan picks a ball at random.	
			Write down the probability that the ball is red or blue.	
		(ii)	Megan replaces the ball. She picks a ball at random, notes the colour and replaces the ball.	[1]
			She repeats this 60 times.	
			Calculate the number of times the ball is expected to be red or blue.	
				[1]
	(b)	Mic	k picks 2 of the 12 balls at random, without replacement.	
		Calo	culate the probability that the balls are different colours.	
				[4]
	(c)		rie picks balls at random, without replacement, from the 12 balls. en she picks a green ball she stops.	
		The	probability that she picks a green ball on pick n is $\frac{21}{220}$.	
		Fine	If the value of n .	

 $n = \dots [2]$

© UCLES 2022 0580/21/O/N/22

12

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 0580/21/O/N/22

Cambridge IGCSE™

MATHEMATICS		0580/21
Paper 2 Extended	Octo	ber/November 2022
MARK SCHEME		
Maximum Mark: 70		
	Published	
		1

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

This document consists of 7 printed pages.

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 7

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Ma	ths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao - correct answer only

dep – dependent

 $FT-follow\ through\ after\ error$

isw – ignore subsequent working

oe – or equivalent

SC - Special Case

nfww – not from wrong working

soi – seen or implied

© UCLES 2022 Page 3 of 7

Question	Answer	Marks	Partial Marks
1	Any multiple of 72	1	
2	7 h 10 min	1	
3	$\frac{4}{25}$ cao	2	M1 for $\frac{32}{200}$ oe
4	140, 60	2	M1 for $\frac{200}{(7+3)} \times k$ where $k = 1, 7 \text{ or } 3$
5	54	2	M1 for 180 – 71 – 55 oe or B1 for 55 or 125 in a relevant correct position on the diagram
6	442	2	M1 for $\frac{100-15}{100} \times 520$ oe or B1 for 78
7(a)	a, b, c, d	1	
7(b)	6	1	
8(a)	243	1	
8(b)	4n + 9 oe final answer	2	B1 for $4n + k$ or $jn + 9$, $j \neq 0$ or for correct answer seen then spoilt
9	$\frac{2}{6} + \frac{5}{6}$ oe	M1	i.e. correct fractions with common denominator <i>6k</i>
	$1\frac{1}{6}$ cao	A1	
10	$2x^9$ final answer	2	B1 for kx^9 or $2x^k$ as final answer or $2x^9$ spoiled
11	$ \begin{bmatrix} x = 1 & 4 \\ [y =] & -1 \end{bmatrix} $	2	B1 for each
12(a)	6	1	
12(b)	8	2	M1 for $\left(\frac{2}{3}\right)^2$ or $\left(\frac{3}{2}\right)^2$ oe seen
13(a)	2.8 oe	1	
13(b)	175	2	M1 for a correct relevant area calculation e.g.
			$(15-5) \times 14$ or $\frac{1}{2} \times 5 \times 14$ oe or better

© UCLES 2022 Page 4 of 7

Question	Answer	Marks	Partial Marks
14	Rotation (5, 3) 90° clockwise oe	3	B1 for each
15	71.6 or 71.61 to 71.62	3	M2 for $\frac{\text{angle}}{360} = \frac{26 - 8 - 8}{2\pi \times 8}$ or better or M1 for $\frac{\text{angle}}{360} \times 2\pi \times 8$ oe
16	[u =] 20 [v =] 52 [w =] 108 [x =] 36	4	B1 for each
17	$5x^{625}$ final answer	2	B1 for final answer kx^{625} or $5x^k$ or correct answer spoiled
18	12.7 or 12.68 to 12.69	4	M3 for $\frac{7 \sin 115}{\sin(180-115-35)}$ or B2 for 8.03 seen
			B1 for [angle $C = 30$] M2 for $\frac{7 \sin 115}{\sin(their \text{ angle } C)}$ or M1 for $\frac{\sin 115}{BC} = \frac{\sin(their \text{ angle } C)}{7}$ oe
19	$2x^3 - 5x^2 - 4x + 12$ final answer	3	B2 for correct expansion of the three brackets unsimplified or for simplified four-term expression of correct form with three terms correct
			or B1 for correct expansion of two of the three given brackets with at least three terms out of four correct
20(a)	(1+x)(1-y) final answer	2	B1 for $1+x-y(1+x)$ or $1-y+x(1-y)$
20(b)	2x(x+3y)(x-3y) final answer	3	B2 for $2x(x^2-9y^2)$ or correctly factorising into two brackets e.g. $(2x^2+6xy)(x-3y),(x^2-3xy)(2x+6y)$ or B1 for $2(x^3-9xy^2)$ or $x(2x^2-18y^2)$ or for $(x+3y)(x-3y)$

© UCLES 2022 Page 5 of 7

Question	Answer	Marks	Partial Marks
21	Correct sketch with maximum at origin and minimum in fourth quadrant	2	B1 for any cubic with exactly 2 distinct turning points
22(a)	Correct sketch Correct sketch to go through (0, 1), (360, 1) and (180, -1)	2	To go through (0, 1) and close to (360, 1) and reasonably close to (180, -1) B1 for correct cosine curve shape through (0, 1)
22(b)	120, 240	2	B1 for each or for two values with sum of 360
23	$\frac{144}{w}$ oe	3	M2 for $y = \frac{k}{w}$ oe or M1 for $x = cw^2$ or for $y = \frac{j}{\sqrt{x}}$ oe
24	4 nfww	2	M1 for 39 + 0.5 or 36 – 0.5 or better seen 39 – 0.5 or 36 + 0.5
25(a)(i)	$\frac{3}{4}$ oe	1	
25(a)(ii)	45	1	FT 60 × their (a)(i) correctly evaluated
25(b)	47/66 oe	4	M3 for $1 - \left(\frac{5}{12} \times \frac{4}{11} + \frac{4}{12} \times \frac{3}{11} + \frac{3}{12} \times \frac{2}{11}\right)$ oe or M2 for $\left(\frac{5}{12} \times \frac{4}{11} + \frac{4}{12} \times \frac{3}{11} + \frac{3}{12} \times \frac{2}{11}\right)$ oe or $\left(\frac{5}{12} \times \frac{4}{11} + \frac{5}{12} \times \frac{3}{11} + \frac{4}{12} \times \frac{3}{11}\right)$ oe or M1 for $\frac{5}{12} \times \frac{4}{11}$ or $\frac{5}{12} \times \frac{3}{11}$ or $\frac{4}{12} \times \frac{3}{11}$ or $\frac{3}{12} \times \frac{2}{11}$ oe If 0 scored, SC1 for $\frac{47}{72}$ oe

© UCLES 2022 Page 6 of 7

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022

PUBLISHED

Question	Answer	Marks	Partial Marks
25(c)	5	2	M1 for correct trial to at least two balls one of which is not green

© UCLES 2022 Page 7 of 7

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/22

Paper 2 (Extended)

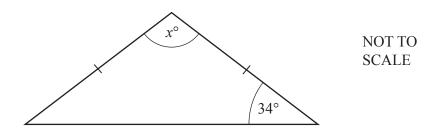
October/November 2022

1 hour 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS


- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 70.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

1

The diagram shows an isosceles triangle.

Find the value of x.

$$x = \dots$$
 [2]

2 Simplify.

$$y \times 27 - y \times 77$$

3 Find the sum of 3^2 and -3^2 .

4 Expand.

$$x(3+x^2)$$

(a) These are the first five to					
				\$	[
				,	
	erms of a sequ	uence.			
	27 26	23	18	11	
Find the next two terms	in the sequen	ce.			
				, .	[
(b) The table shows information	ation about tw	o differe	nt sequence		
Fire	st five terms of	of sequen	ce	<i>n</i> th term	
Sequence A 3	10 17	24	31		
Sequence B 2	11 26	47	74		
Complete the table.					

4

7 Without using a calculator, work out $\frac{5}{9} - \frac{1}{6}$.

You must show all your working and give your answer as a fraction in its simplest form.

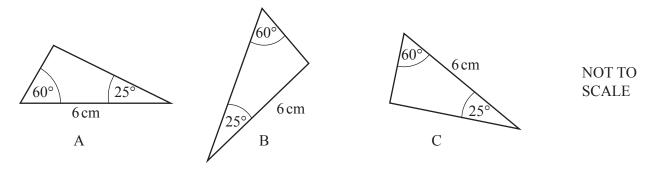
 . [2]

8 Daryl records the number of hours in a week 8 people spend exercising.

5 2 1.5 3

4.5 2

(a) Find the median.


.....h [2]

(b) Explain why the mean may not be a suitable average to use.

.....[1]

18

9 The diagram shows three triangles A, B and C.

(a) Which two of the triangles A, B and C are congruent with each other?

.....[1]

RHS

(b) Draw a ring around the congruence criterion that can be used to support your answer to part (a).

(w)

[1]

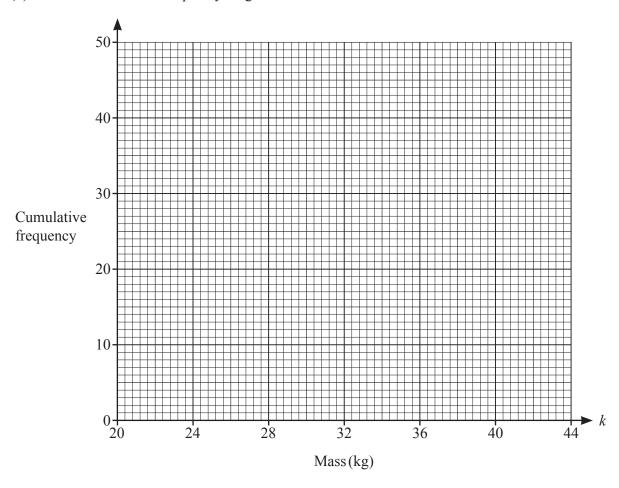
SSS

ASA

SAS

0580/22/O/N/22

	5		
10	Calculate.		
	(a) 2000×1.2^3		
	(b) $2\frac{1}{8} \times \frac{6}{17}$		[1]
	(c) $\frac{4.5(\cos 30^\circ)}{\sqrt{3}} - 2$		[1]
11	The graph of $y = (x-3)(x+b)(x+2)$ intersects the y-axis at -30 .		[1]
	 (a) Find the value of b. b = (b) When x > 0 the graph crosses the x-axis once. Write down the coordinates of this point. 		[2]
12	$x = 3^2 \times 5^2 \times 7 \times 199^{57}$ when written as a product of its prime fact	ors.	[1]


Write $x \div 315$ as a product of its prime factors.

.....[2]

13 The table shows information about the mass of each of 50 children.

Mass (k kg)	Cumulative Frequency
<i>k</i> ≤ 20	0
<i>k</i> ≤ 22	7
<i>k</i> ≤ 24	23
<i>k</i> ≤ 28	35
<i>k</i> ≤ 32	43
<i>k</i> ≤ 36	47
<i>k</i> ≤ 42	50

(a) Draw a cumulative frequency diagram to show this information.

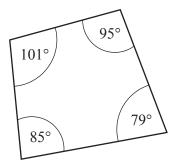


[3]

(b) Use your graph to find an estimate of the 90th percentile.

© UCLES 2022 0580/22/O/N/22

14 136 girls and 144 boys each measure the distance they jump in centimetres. The box-and-whisker plots show the distributions of these distances.

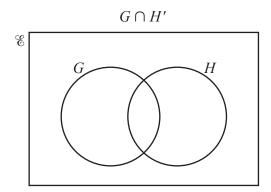


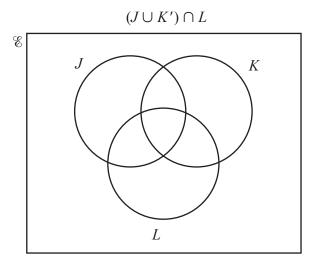
Each child who jumps a distance greater than 160 cm gets a certificate.

Work out an estimate of the total number of children who get a certificate.

.....[2]

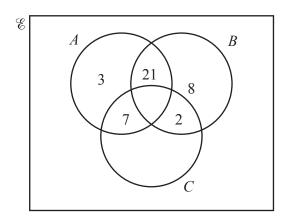
15


NOT TO SCALE


The diagram shows a quadrilateral.

Give a geometrical reason why this is a cyclic quadrilateral.

______[1]


16 (a) Shade the region indicated in each Venn diagram.

[2]

(b) The Venn diagram shows some information about the number of elements in sets A, B, C and \mathscr{E} .

Given the following information, complete the Venn diagram.

$$n(A \cap B \cap C) = 1$$

$$n(A \cup B \cup C)' = 17$$

$$n(C) = 42$$

[2]

9

17
$$f(x) = x^2$$
 $g(x) = \frac{x+5}{2}$ $h(x) = 7x-3$

(a) Find f(-3).

(b) Find $g^{-1}(x)$.

$$g^{-1}(x) = \dots [2]$$

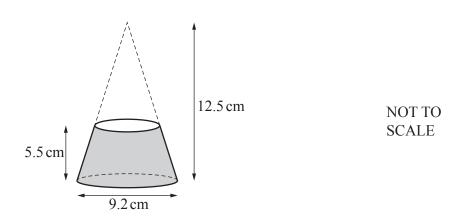
(c) Solve $gf(x) = hh^{-1}(63)$ where x > 0.

$$x = \dots$$
 [3]

10

18	Write 0.419 as a fraction in its simplest form. You must show all your working.	
		 [3]
19	Katy picks a number at random from the numbers 2, 3 and 5. She then picks a number at random from the numbers 5, 6, 7 and 9 When she adds the two numbers the answer is even.	
	Find the probability that exactly one of the numbers picked is a 5.	
		 [3]

© UCLES 2022 0580/22/O/N/22


- 20 Simplify fully.
 - (a) $(81x^{16})^{\frac{3}{4}}$

(b)	$\left(\frac{1}{y^2}\right)^{-\frac{1}{2}}$
-----	---

.....[2]

.....[1]

21

A solid is made by cutting a small cone from a larger cone, as shown in the diagram.

The height of the larger cone is 12.5 cm.

The height of the solid is 5.5 cm.

The diameter of the base of the larger cone is 9.2 cm.

Work out the volume of the solid.

[The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

 cm^3	[4]

Questions 22 and 23 are printed on the next page.

12

22 The volumes of two mathematically similar objects are 56 cm³ and 875 cm³. The height of the smaller object is 18 cm.

Find the height of the larger object.

23 Solve
$$\frac{4}{x+1} + \frac{2}{2x-5} = 3$$
.

You must show all your working.

$$x = \dots$$
 or $x = \dots$ [7]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge IGCSE™

MATHEMATICS		0580/22
Paper 2 Extended	Octo	ber/November 2022
MARK SCHEME		
Maximum Mark: 70		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **7** printed pages.

© UCLES 2022 [Turn over

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 7

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Ma	nths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao - correct answer only

dep – dependent

 $FT-follow\ through\ after\ error$

isw - ignore subsequent working

oe – or equivalent

SC - Special Case

nfww – not from wrong working

soi – seen or implied

© UCLES 2022 Page 3 of 7

Question	Answer	Marks	Partial Marks
1	112	2	M1 for $180 - 34 \times 2$ oe
2	-50y	1	
3	0	1	
4	$3x + x^3$ final answer	2	B1 for one correct term from two in final answer or for correct answer then spoilt
5	6.55	3	M2 for $(33.48 - 2.4 \times 0.85)$ oe
			or M1 for 2.4×0.85
6(a)	2 -9	2	B1 for one correct
6(b)	Sequence A $7n-4$ oe final answer	2	B1 for $7n + c$ or $kn - 4$ $k \neq 0$ or for correct answer seen then spoilt
	Sequence B	2	M1 for finding second differences of 6
	$3n^2 - 1$ oe final answer		or has an answer that is a quadratic sequence
			or for correct answer seen then spoilt
7	$\frac{10}{18}$ and $\frac{3}{18}$	M1	Allow any correct common denominator 18k
	$\frac{7}{18}$ cao	A1	
8(a)	3.5	2	M1 for values in correct order 1.5 2 2 3 4 4.5 5 18
			or 3 and 4 identified as middle numbers
8(b)	One extreme value oe	1	
9(a)	A and C	1	
9(b)	ASA	1	
10(a)	3456	1	
10(b)	0.75 or $\frac{3}{4}$ oe	1	
10(c)	0.25 or $\frac{1}{4}$	1	
11(a)	5	2	M1 for $(0-3)(0+b)(0+2) = -30$ oe or better

© UCLES 2022 Page 4 of 7

Question	Answer	Marks	Partial Marks
11(b)	(3, 0)	1	
12	5 × 199 ⁵⁷	2	M1 for $[315 =] 3^2 \times 5 \times 7$ oe
			or $3^2 \times 5^2 \times 7 \div 315 = 5$
13(a)	A correct cumulative frequency diagram	3	B1 for correct horizontal placement for 7 plots B1 for correct vertical placement for 7 plots B1FT dep on at least B1 for reasonable increasing curve or polygon through <i>their</i> 7 points If 0 scored SC1 FT for 6 out of 7 points correctly plotted
13(b)	33 to 34.5	1	FT <i>their</i> increasing cumulative frequency graph
14	104	2	M1 for 0.5×136 oe or 0.25×144 oe
15	Opposite angles add up to 180 oe	1	
16(a)	$\frac{G}{J}$ L	2	B1 for each
16(b)	$ \begin{array}{c c} A & & B \\ \hline & & & \\ \hline $	2	B1 for 2 correct
17(a)	9	1	
17(b)	2x - 5 final answer	2	M1 for correct first step e.g. $x = \frac{y+5}{2}$ or $2y = x+5$ or $y - \frac{5}{2} = \frac{x}{2}$ or better

© UCLES 2022 Page 5 of 7

PUBLISHED

Question	Answer	Marks	Partial Marks
17(c)	11	3	M1 for $\frac{x^2 + 5}{2}$
			$\frac{2}{\text{M1 for hh}^{-1}(63)} = 63 \text{ soi}$
18	419.İ9 –4.İ9 oe	M1	
	83 198 cao	A2	Al for $\frac{415}{990}$ oe
			If M0 scored SC1 for $\frac{k}{990}$ or correct
			answer with insufficient working
19	$\frac{3}{7}$ oe	3	M1 for clearly identifying the 7 even outcomes 2 6, 3 5, 3 7, 3 9, 5 5, 5 7, 5 9
			M1 for clearly identifying the 3 even outcomes with just one five 3 5, 5 7 and 5 9
			If 0 scored SC1 for answer $\frac{1}{4}$ oe
20(a)	$27x^{12}$ final answer	2	B1 for kx^{12} or $27x^c$ final answer or for $27x^{12}$ then spoilt
20(b)	[±] y	1	
21	228 or 228.3 to 228.4	4	M1 for $\frac{1}{3} \times \pi \times \left(\frac{9.2}{2}\right)^2 \times 12.5$ oe
			M1 for $\frac{9.2}{12.5} = \frac{diameter}{12.5 - 5.5}$ oe or better
			M1 for $\frac{1}{3} \times \pi \times \left(\frac{their 5.152}{2}\right)^2 \times (12.5 - 5.5)$
			oe
			OR
			M2 for $\frac{\pi}{3} \times \left(\frac{9.2}{2}\right)^2 \times 12.5 - \frac{\pi}{3} \times r^2 \times (12.5 - 5.5)$ oe for any $r < 4.6$
			If 0 scored SC1 for 913 or 913.3 to 913.5

© UCLES 2022 Page 6 of 7

0580/22

PUBLISHED

Question	Answer	Marks	Partial Marks
22	45	3	M2 for $\sqrt[3]{\frac{875}{56}} \times 18$ oe
			or M1 for $\sqrt[3]{\frac{875}{56}}$ or $\sqrt[3]{\frac{56}{875}}$ oe or $\frac{18^3}{h^3} = \frac{56}{875}$ oe
23	$[0 =] 6x^2 - 19x + 3$	B5	B4 for $8x - 20 + 2x + 2 = 6x^2 + 6x - 15x - 15$ or better OR M2 for $4(2x - 5) + 2(x + 1) = 3(x + 1)(2x - 5)$ oe or M1 for $4(2x - 5) + 2(x + 1)$ or better or common denominator $(x + 1)(2x - 5)$ or better B1 for $2x^2 + 2x - 5x - 5$ or better seen M1 for correctly simplifying <i>their</i> quadratic to the form $[0 =]ax^2 + bx + c$
	Correct method to solve <i>their</i> three term quadratic	M1	e.g. $(6x-1)(x-3)$ $\frac{-(-19)\pm\sqrt{(-19)^2-4\times6\times3}}{2\times6}$
	$x = 3, x = \frac{1}{6}$ oe	B1	

© UCLES 2022 Page 7 of 7

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/23

Paper 2 (Extended)

October/November 2022

1 hour 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 70.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

2

1	Marco starts work at	2045 and f	inishes at 020	8 the next day	7.	
	Find the length of tir	ne, in hours	and minutes,	he works.		
					h min	[1]
2	120	121	149	164	216	
	From this list, write	down				
	(a) a square numbe	r				
						[1]
	(b) a cube number.					
						[1]
3	Calculate. $\sqrt{15} + \frac{4.8}{2.2}$					
						[1]

Muhammad	Shafin	ur Rohman	(03247304567)	Aitchison Colle	201
munaninau	Juany	ui Neilliali	(U32413U4301)	/ Allulisuli Guli	зч

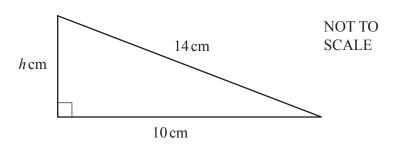
4	The mean mass of four men in a rowing team is 97.5 kg. The modal mass is 101 kg. The range of the masses is 8 kg.
	Find the mass of each of the four men.
	kg , kg , kg, kg [3
5	Without using a calculator, work out $\frac{5}{7} - \frac{2}{3}$.
	You must show all your working and give your answer as a fraction in its simplest form.
	[2

4

6 A spinner can land on the colours green, black or red.
The table shows the probabilities of the spinner landing on green or black.

Colour	Green	Black	Red
Probability	$\frac{2}{5}$	$\frac{1}{4}$	

	(a)	Complete the table.		[2]
	(b)	Chang spins the spinner 120 times.		
		Find the expected number of times it lands on green.		
7	Find	the lowest common multiple (LCM) of 36 and 60.		[1]
8		the point $(-3, 5)$ and B is the point $(5, 2)$. If the coordinates of the midpoint of the line AB .		[2]
			()	[2]


© UCLES 2022 0580/23/O/N/22

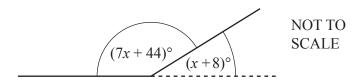
9 Solve the simultaneous equation	UHS
-----------------------------------	-----

$$3x - 2y = 21$$

$$5x + 2y = 51$$

x =	
y =	 [2]

The diagram shows a right-angled triangle.


(a) Calculate the value of h.

$$h = \dots$$
 [3]

(b) Find the perimeter of this triangle.

..... cm [1]

11

The diagram shows two sides of a regular polygon.

The interior angle of the polygon is $(7x+44)^{\circ}$ and the exterior angle is $(x+8)^{\circ}$.

Find the number of sides of this polygon.

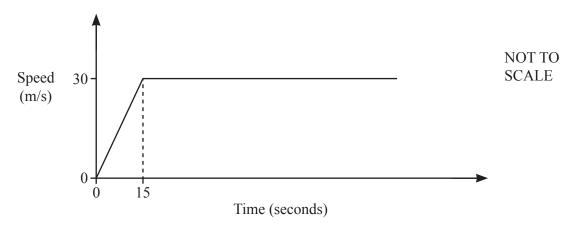
			[4]
--	--	--	-----

12 Keita invests \$4000 at a rate of 2.6% per year compound interest.

Work out the interest earned on the investment at the end of 3 years.

13 Convert 0.24 to a fraction.

You must show all your working and give your answer in its simplest form.


.....[2

14	A map	has	a	scale o	f	1	:2000	000
----	-------	-----	---	---------	---	---	-------	-----

Find the area, in square kilometres, of a lake that has an area of 12.4 cm² on the map.

..... km² [2]

15 The diagram shows the speed–time graph for part of the journey of a car.

The car starts from rest and accelerates at a uniform rate for 15 seconds before reaching a constant speed of $30 \,\mathrm{m/s}$.

(a) Calculate the acceleration for the first 15 seconds.

..... m/s² [1]

(b) After *T* minutes, the total distance travelled is 45 kilometres.

Find the value of *T*.

 $T = \dots \min [4]$

16	A kite is drawn on a coordinate grid. The diagonals of the kite intersect at the point $(-2, -5)$.			
	One diagonal has equation $y = 4x + 3$.			
	Find the equation of the other diagonal of the kite. Give your answer in the form $y = mx + c$.			
		ν =		[3]
17	y is proportional to the square of $(x-7)$. When $x = 12$, $y = 2$.	J		[0]
	Find y when $x = 17$.			
		<i>y</i> =		[3]
18	Two bottles are mathematically similar. The small bottle has a capacity of 324 ml and a height of 12 cm. The large bottle has a capacity of 768 ml.			
	Calculate the height of the large bottle.			
			cm	[3]

© UCLES 2022 0580/23/O/N/22

Muhammad Shafiq	ur Rehman	(03247304567)	Aitchison	College

19
$$f(x) = 5x - 3, x > 1$$

 $g(x) = \frac{10}{x - 2}, x \neq 2$

(a) Find gf(x). Give your answer in its simplest form.

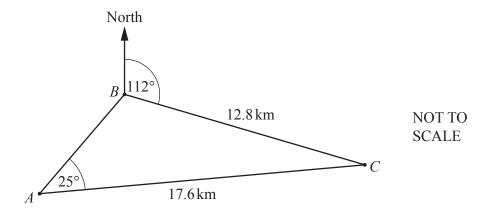
[2]
 4

(b) Find $g^{-1}(x)$.

$$g^{-1}(x) =$$
 [3]

(c) Find $ff^{-1}(x-1)$.

20 (a)


Sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

[2]

(b) Solve $3 - 2\sin x = \frac{13}{4}$ for $0^{\circ} \le x \le 360^{\circ}$.

x = or x = [3]

21

The diagram shows the positions of three ships A, B and C. $AC = 17.6 \,\mathrm{km}$, $BC = 12.8 \,\mathrm{km}$ and angle $BAC = 25^{\circ}$. The bearing of C from B is 112° and angle ABC is obtuse.

Calculate the bearing of B from A.

.....[5]

Question 22 is printed on the next page.

Muhammad	Shafig	ur Rehman	(03247304567)	Aitchison	College

22	(a)	Expand and simplify.		
			()	1) (

$$(2x-1)(x+4)(x-3)$$

[3

(b) Write as a single fraction in its simplest form.

$$\frac{4}{2x-3} \div \frac{2x^2 + 14x}{2x^2 + 11x - 21}$$

.....[4

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge IGCSE™

MATHEMATICS		0580/23
Paper 2 Extended	Octo	ber/November 2022
MARK SCHEME		
Maximum Mark: 70		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 6 printed pages.

© UCLES 2022 [Turn over

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 6

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Ma	Maths-Specific Marking Principles						
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.						
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.						
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.						
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).						
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.						
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.						

Abbreviations

cao - correct answer only

dep-dependent

 $FT-follow\ through\ after\ error$

isw - ignore subsequent working

oe – or equivalent

SC - Special Case

nfww – not from wrong working

soi – seen or implied

© UCLES 2022 Page 3 of 6

PUBLISHED

Question	Answer	Marks	Partial Marks
1	5[h] 23[min]	1	
2(a)	121	1	
2(b)	216	1	
3	6.05 or 6.054 to 6.055	1	
4	93 95 101 101	3	M1 for 4 × 97.5 implied by 390 or for four numbers which add to 390 B1 for four numbers with a range of 8 B1 for four numbers with mode of 101 to a maximum of 2 marks
5	$\frac{15}{21}$ and $\frac{14}{21}$ oe	M1	Allow any correct common denominator 21 <i>k</i>
	$\frac{1}{21}$ cao	A1	
6(a)	$\frac{7}{20}$ oe or 0.35 or 35%	2	M1 for $1 - \left(\frac{2}{5} + \frac{1}{4}\right)$ oe
6(b)	48	1	
7	180	2	M1 for answer $2 \times 2 \times 3 \times 3 \times 5$ or better or for answer $180k$ or two correct factor trees, tables or Venn diagram or better or a list of multiples of both 36 and 60 with at least 3 correct of each
8	(1, 3.5)	2	B1 for each
9	[x =] 9 [y =] 3	2	B1 for each answer
10(a)	9.8[0] or 9.797 to 9.798	3	M2 for $14^2 - 10^2$ oe or better or M1 for $10^2 + h^2 = 14^2$ oe or better
10(b)	33.8 or 33.79 to 33.80	1	FT 24 + their (a)
11	15	4	B2 for $x = 16$ soi or M1 for $7x + 44 + x + 8 = 180$ or better M1 for $360 \div (their \ x + 8)$ oe
12	320.18	3	B2 for 4320.18 or M1 for 4000 × $\left(1 + \frac{2.6}{100}\right)^3$ [-4000] oe

© UCLES 2022 Page 4 of 6 0580/23

PUBLISHED

Question	Answer	Marks	Partial Marks
13	$2.\dot{4} - 0.2\dot{4}$ oe	M1	
	$\frac{11}{45}$ cao	B1	If 0 scored SC1 for $\frac{k}{90}$.
14	49.6	2	M1 for answer figs 496
15(a)	2	1	
15(b)	25.125	4	M3 for $\frac{15\times30}{2} + 30(k-15)[=$ figs 45] oe OR B2 for 44 775 or 44.775 OR M1 for $\frac{15\times30}{2}$ or $30(k-15)$ oe B1 for 45 000 or 0.225 or 0.03
16	$[y=] -\frac{1}{4}x - \frac{11}{2}$ oe	3	M1 for grad = $-\frac{1}{4}$ oe soi M1 for correct substitution shown of (-2, -5) into $y = (their m)x + c$ oe $(their m \neq 4)$
17	8	3	
18	16	3	M2 for $12 \times \sqrt[3]{\frac{768}{324}}$ oe or M1 for $\sqrt[3]{\frac{768}{324}}$ or $\sqrt[3]{\frac{324}{768}}$ or $\frac{h^3}{12^3} = \frac{768}{324}$ oe
19(a)	$\frac{2}{x-1}$ final answer	2	M1 for $\frac{10}{5x-3-2}$ or better
19(b)	$\frac{10}{x} + 2$ or $\frac{10 + 2x}{x}$ final answer	3	M2 for $y-2 = \frac{10}{x}$ or $x = \frac{10+2y}{y}$ oe or $yx = 10 + 2x$ oe or M1 for $x = \frac{10}{y-2}$ or $y(x-2) = 10$ oe or better
19(c)	x-1	1	

© UCLES 2022 Page 5 of 6

PUBLISHED

Question	Answer	Marks	Partial Marks
20(a)	Correct sketch to go through (0, 0), (180, 0) and (360, 0)	2	B 1 for correct sine curve shape through the origin
20(b)	187.2 and 352.8	3	B2 for one correct value, if more than two answers given award B2 if any of the correct answers found and may be in the working or M1 for $\sin x = -\frac{1}{8}$ oe soi If 0 scored, SC1 for two reflex angles with a sum of 540 or two non-reflex angles with a sum of 180
21	076 or 076.4 to 076.5	5	B3 for [angle $ABC = $] 144 or 144.4 to 144.5 OR M2 for [sin $ABC = $] $\frac{17.6 \sin 25}{12.8}$ oe or M1 for $\frac{17.6}{\sin B} = \frac{12.8}{\sin 25}$ oe M1 for $180 - their$ 35.5 AND M1 for $their$ angle $ABC - (180 - 112)$ oe
22(a)	$2x^3 + x^2 - 25x + 12$ final answer	3	B2 for correct unsimplified expanded expression or for simplified four-term expression of correct form with 3 terms correct or B1 for correct expansion of 2 brackets with at least 3 terms out of 4 correct
22(b)	$\frac{2}{x}$ final answer	4	M1 for $\left[\frac{4}{2x-3}\right] \times \frac{2x^2 + 11x - 21}{2x^2 + 14x}$ oe soi B1 for $(x+7)(2x-3)$ oe factorised B1 for $2x(x+7)$ oe factorised

© UCLES 2022 Page 6 of 6

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/41

Paper 4 (Extended)

October/November 2022

2 hours 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

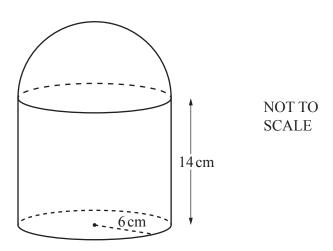
- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

2


- 1 (a) Calculate the volume of
 - (i) a solid cylinder with radius 6 cm and height 14 cm,

..... cm³ [2]

(ii) a solid hemisphere with radius 6 cm. [The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

..... cm³ [2]

(b)

The cylinder and hemisphere in **part (a)** are joined to form the solid in the diagram. The solid is made of steel and 1 cm³ of steel has a mass of 7.85 g.

(i) Show that 1 cm³ of steel has a mass of 0.007 85 kg.

[1]

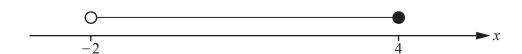
(ii) Calculate the total mass of the solid.

..... kg [2]

Muhammad	Shafin	ur Pohman	(03247304567)	Aitchicon	Collogo
wunammad	Snang	ur Kenman	(03247304567)	Aitchison	College

(c)	200	2000 cm ³ of iron is melted down and some of it is used to make 50 spheres with radius 2 cm.						
	(i)	Calculate the percentage of iron that is left over. [The volume, V , of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]						
		3						
		% [3]						
	(ii)	The iron left over is then made into a cube.						
		Calculate the length of an edge of the cube.						
(d)	A so	blid cone has radius $3R$ cm and slant height $9R$ cm. blid cylinder has radius x cm and height $7x$ cm. total surface area of the cone is equal to the total surface area of the cylinder.						
		en that $R = kx$, find the value of k . e curved surface area, A , of a cone with radius r and slant height l is $A = \pi r l$.						
		$k = \dots [4]$						

4


2

(a)	Write	
	(i) 2994.99 correct to the nearest 10,	
		[1]
	(ii) 0.983 correct to 1 decimal place,	
		[1]
	(iii) 2090 correct to 2 significant figures.	
		[1]
(b)	Write down a prime number between 90 and 100.	
		[1]
(c)	Write 2^{-6} as a fraction.	
		[1]
(d)	Write 0.00701 in standard form.	
		[1]
(e)	Simplify $1.5 \times 10^x + 1.5 \times 10^{x-1}$ giving your answer in standard form.	
		[2]
(f)	Write 0.37 as a fraction. You must show all your working.	
	Tou must show an your working.	
		[2]
		[2]

© UCLES 2022 0580/41/O/N/22

5

3 (a)

Write down the inequality shown by the number line.

.....[1]

(b)
$$-3 \le 2x + 3 < 9$$

(i) Solve the inequality.

.....[3]

(ii) Write down all the integer values of x that satisfy the inequality.

.....[2]

(c) Solve the equations.

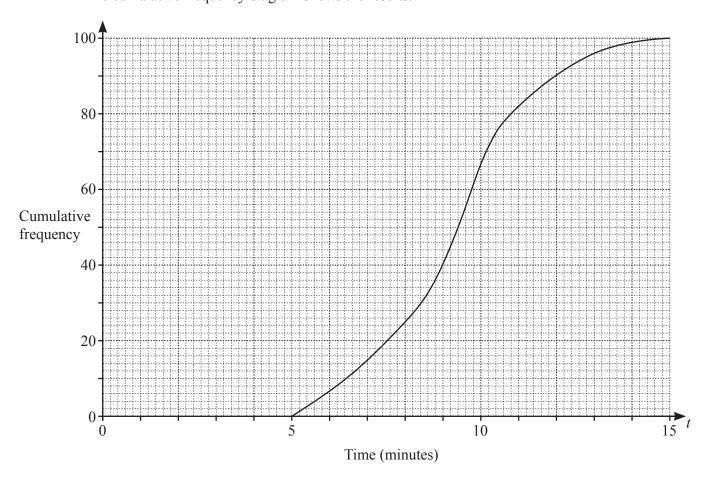
(ii) $\frac{5}{x+3} = \frac{3}{x+5}$

(i)
$$3(3-x) - \frac{2(x+2)}{5} = 1$$

$$x = \dots [4]$$

$$x =$$
 [3]

6


4	(a)	(i)	Zak invests \$500 at a rate of 2% per year simple interest.
			Calculate the value of Zak's investment at the end of 5 years.
			\$[3]
	(ii)	Yasmin invests \$500 at a rate of 1.8% per year compound interest.
			Calculate the value of Yasmin's investment at the end of 5 years.
			A
		••/	\$[2]
	(1	ii)	Zak and Yasmin continue with these investments.
			How many more complete years is it before the value of Yasmin's investment is greater than the value of Zak's investment?
			[3]

© UCLES 2022 0580/41/O/N/22

Muhammad Shafic	ur Rehman	(03247304567)	Aitchison	College

(b)	Xavier buys a car for \$2500. The value of the car decreases exponentially at a rate of 10% each year.	
	Calculate the value of Xavier's car at the end of 5 years. Give your answer correct to the nearest dollar.	
		•
(c)	\$	3]
	Find the value of r .	
	$r = \dots $ [3	3]

5 (a) 100 students each record the time, *t* minutes, taken to eat a pizza. The cumulative frequency diagram shows the results.

Find an estimate of

(i) the median,

..... min [1]

(ii) the interquartile range,

..... min [2]

(iii) the number of students taking more than 11 minutes to eat a pizza.

.....[2]

© UCLES 2022 0580/41/O/N/22

q

(b) 150 students each record how far they can throw a tennis ball. The table shows the results.

Distance (d metres)	$0 < d \leqslant 20$	20 < d ≤ 30	30 < d ≤ 35	35 < <i>d</i> ≤ 45	45 < <i>d</i> ≤ 60
Frequency	4	38	40	53	15

	٠) Calculate an	actimata	of the	
•	Ц,) Calculate all	estimate	or mc	mean

1	m	4
---	---	---

(ii) A histogram is drawn to show this information. The height of the bar representing $30 < d \le 35$ is 12 cm.

Calculate the height of each of the other bars.

Distance (d metres)	Frequency	Height of bar (cm)
0 < d ≤ 20	4	
20 < d ≤ 30	38	
30 < d ≤ 35	40	12
35 < <i>d</i> ≤ 45	53	
45 < <i>d</i> ≤ 60	15	

[3]

(iii) Two students are chosen at random.

Find the probability that they both threw the ball more than 45 m.

.....[2]

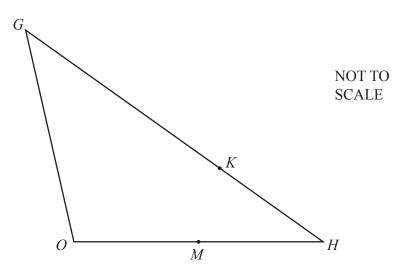
10

6 (a)
$$\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 $\mathbf{q} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

Find

(i) 3q,

(ii) p-q,


(iii) |p|.

(b) B is the point (2, 7) and $\overrightarrow{AB} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}$.

Find the coordinates of A.

(.....) [2]

(c)

In triangle OGH, M is the midpoint of OH and K divides GH in the ratio 5:2. $\overrightarrow{OG} = \mathbf{g}$ and $\overrightarrow{OH} = \mathbf{h}$.

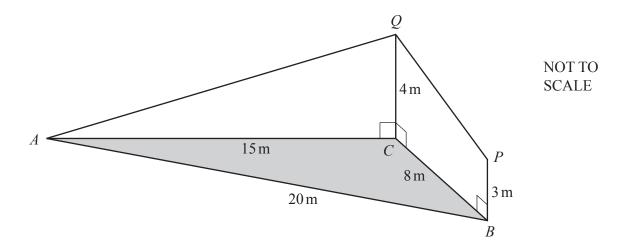
Find \overrightarrow{MK} in terms of **g** and **h**. Give your answer in its simplest form.

$$\overrightarrow{MK} = \dots$$
 [4]

12

7	(a)		$f(x) = 10 - x$ Find $g(\frac{1}{2})$.	$g(x) = \frac{2}{x}, \ x \neq 0$		j(x) = 5 - 2x	
		(ii)	Find $hg(\frac{1}{2})$.				[1]
	(b)	Fino	dx when $f(x) = 7$.				[1]
	(c)	Find	dx when $g(x) = h(3)$.		<i>x</i> =		[1]
	(d)	Fino	$d j^{-1}(x)$.		<i>x</i> =		[2]
	(e)	Wri	te $f(x) + g(x) + 1$ as a	a single fraction in its sin			[2]

.....[3]


(f)
$$(f(x))^2 - ff(x) = ax^2 + bx + c$$

Find the values of a, b and c.

(g) Find x when $h^{-1}(x) = 10$.

$$x = \dots$$
 [2]

The diagram shows triangle ABC on horizontal ground.

 $AC = 15 \,\mathrm{m}$, $BC = 8 \,\mathrm{m}$ and $AB = 20 \,\mathrm{m}$.

BP and CQ are vertical poles of different heights.

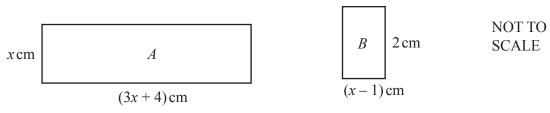
 $BP = 3 \,\mathrm{m}$ and $CQ = 4 \,\mathrm{m}$.

AQ and PQ are straight wires.

(a) Show that angle $ACB = 117.5^{\circ}$, correct to 1 decimal place.

[4]

(b) Calculate the area of triangle *ABC*.


..... m² [2]

Muhammad	Shafia ur	Pohman	(03247304567)	Aitchicon	Collogo
Munammau	Snanu ur	Rennan	(U324/3U430/)	AllChison	College

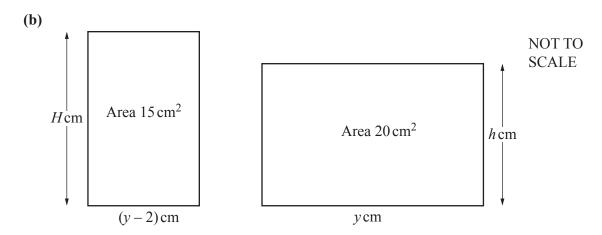
(c)	Calculate the length of AQ .
(d)	
(e)	Another straight wire connects A to the midpoint of PQ .
	Calculate the angle between this wire and the horizontal ground.
	[5]

16

9 (a)

The total of the areas of rectangles A and B is $20 \,\mathrm{cm}^2$.

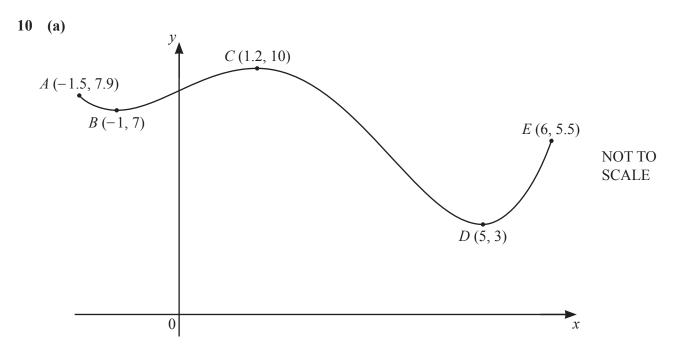
(i) Show that $3x^2 + 6x - 22 = 0$.


(ii) Solve the equation $3x^2 + 6x - 22 = 0$, giving your answers correct to 4 significant figures. You must show all your working.

$$x =$$
 or $x =$ [4]

(iii) Find the perimeter of rectangle B.

..... cm [1]


[2]

The diagram shows two rectangles where H - h = 1.

By forming a quadratic equation and factorising, find the value of y.

	$\Gamma 71$
y =	 1/1

The diagram shows a sketch of the graph of y = f(x) for $-1.5 \le x \le 6$. The coordinates of five points on the graph of y = f(x) are shown on the diagram.

(i) f(x) = k has two solutions in the interval $-1.5 \le x \le 6$.

Write down a possible integer value of k.

$$k = \dots$$
 [1]

(ii) f(x) = j has no solutions in the interval $-1.5 \le x \le 6$ when j < a or j > b.

Find the maximum value of a and the minimum value of b.

$$b = \dots$$
 [2]

© UCLES 2022 0580/41/O/N/22

19

(b)	Find the coordinates of the two stationary points on the graph of	$y = x^6 - 6x^5.$
	You must show all your working.	

	,)	
<i>,</i>	,)	[5]

© UCLES 2022 0580/41/O/N/22

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 0580/41/O/N/22

Cambridge IGCSE™

MATHEMATICS
Paper 4 Extended
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **9** printed pages.

© UCLES 2022 [Turn over

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 9

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme October/November 2022 PUBLISHED

Ma	aths-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

© UCLES 2022 Page 3 of 9

PUBLISHED

Question	Answer	Marks	Partial Marks
1(a)(i)	1580 or 1583 to 1584	2	M1 for $\pi \times 6^2 \times 14$
1(a)(ii)	452 or 452.3 to 452.4	2	M1 for $\left[\frac{1}{2}\right] \times \frac{4}{3} \times \pi \times 6^3$
1(b)(i)	7.85 ÷ 1000 [= 0.00785]	M1	
1(b)(ii)	16[.0] or 15.95 to 15.99	2	FT {their (a)(i) + their (a)(ii)} $\times 0.00785$ evaluated to 3 sig fig or better M1 for (their (a)(i) + their (a)(ii)) $\times 0.00785$
1(c)(i)	16.2 or 16.21 to 16.23	3	M2 for $\frac{2000 - 50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000} [\times 100]$ or for $\frac{50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000} \times 100$ or M1 for $\frac{50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000}$
1(c)(ii)	6.87 or 6.870 to 6.872	1	FT $\sqrt[3]{2000 - their\left(50 \times \frac{4}{3} \times \pi \times 2^3\right)}$ evaluated to 3sf or better
1(d)	$\frac{2}{3}$ oe	4	M1 for $[\pi](3R)^2 + [\pi]3R \times 9R$ oe M1 for $2[\pi]x^2 + 2[\pi]x \times 7x$ oe M1 for their area of cone = their area of cylinder seen
2(a)(i)	2990 cao	1	
2(a)(ii)	1.0 cao	1	
2(a)(iii)	2100 cao	1	
2(b)	97	1	
2(c)	$\frac{1}{64}$ final answer	1	
2(d)	$7.01[0] \times 10^{-3}$	1	
2(e)	1.65×10^{x}	2	M1 for final answer figs 165 or for $15 \times 10^{x-1}$ seen or for 0.15×10^{x} seen

© UCLES 2022 Page 4 of 9

0580/41

PUBLISHED

Question	Answer	Marks	Partial Marks
2(f)	37.7 – 3.7 [= 34] oe	M1	
	$\frac{34}{90}$ oe fraction	B1	
3(a)	$-2 < x \leqslant 4$ oe	1	
3(b)(i)	$-3 \le x < 3$ final answer	3	M2 for $-3 \le x < k$ or for $k \le x < 3$ or for $-6 \le 2x < 6$ or for $-\frac{3}{2} - \frac{3}{2} \le x < \frac{9}{2} - \frac{3}{2}$ or M1 for $-3 - 3 \le 2x < 9 - 3$ or for $-\frac{3}{2} \le x + \frac{3}{2} < \frac{9}{2}$ After 0 scored SC1 for $-3 \le x$ or for $x < 3$
3(b)(ii)	-3, -2, -1, 0, 1, 2 final answer	2	FT their (i) as long as negative and positive values B1FT for one error or omission
3(c)(i)	$\frac{36}{17}$ oe	4	B3 for $-15x-2x = 5 + 4 - 45$ or better OR B2 for $45 - 15x - 2x - 4 = 5$ oe OR M1 for correct removal of fraction or M1 for correct removal of brackets
3(c)(ii)	-8	3	B2 for $5x - 3x = 9 - 25$ or better or M1 for $5(x + 5) = 3(x + 3)$ oe or better
4(a)(i)	550 nfww	3	M2 for $\frac{500 \times 2 \times 5}{100} + 500$ oe or M1 for $\frac{500 \times 2 \times 5}{100}$ oe
4(a)(ii)	546.65	2	M1 for $500 \times \left(1 + \frac{1.8}{100}\right)^5$ oe
4(a)(iii)	8 nfww	3	B2 for final answer 13 OR M2 for trials correctly comparing both investments to 7 and 8 more years or M1 for at least two trials correctly comparing both investments

© UCLES 2022 Page 5 of 9

PUBLISHED

Question	Answer	Marks	Partial Marks
4(b)	1476 cao	3	B2 for 1480 or 1476.2 OR M1 for $2500 \times \left(1 - \frac{10}{100}\right)^5$ oe B1 for their more accurate answer seen correctly rounded to the nearest dollar.
4(c)	3.2[0] or 3.200 to 3.201	3	M2 for () = $\sqrt[22]{2}$ oe isw or M1 for $[N] \times ()^{22} = 2[N]$
5(a)(i)	9.4	1	
5(a)(ii)	2.4	2	B1 for [uq =] 10.4 or [lq =] 8 but not as final answer
5(a)(iii)	18	2	B1 for 82 seen
5(b)(i)	$34.65 \text{ or } 34\frac{13}{20}$	4	M1 for midpoints 10, 25, 32.5, 40, 52.5 soi M1 for Σfx where values of x are in interval or on boundary M1 dep on second M for $\frac{\Sigma fx}{150}$
5(b)(ii)	0.3, 5.7,, 7.95, 1.5	3	B2 for any two correct or B1 for one correct or for at least three frequency densities seen 0.2, 3.8, 8, 5.3, 1 oe or M1 for [factor] 1.5
5(b)(iii)	$\frac{7}{745}$ oe	2	M1 for $\frac{15}{150} \times \frac{14}{149}$
6(a)(i)	$\begin{pmatrix} -3 \\ 3 \end{pmatrix}$	1	
6(a)(ii)	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	1	
6(a)(iii)	3.61 or 3.605 to 3.606	2	M1 for $2^2 + 3^2$ oe
6(b)	(6, 1)	2	B1 for each

© UCLES 2022 Page 6 of 9

PUBLISHED October/November 202

Question	Answer	Marks	Partial Marks
6(c)	$\frac{2}{7}\mathbf{g} + \frac{3}{14}\mathbf{h}$	4	B3 for correct unsimplified expression for \overline{MK} or B2 for $[\overline{MK} =] \frac{2}{7} \mathbf{g} + k\mathbf{h}$ or $[\overline{MK} =] k\mathbf{g} + \frac{3}{14} \mathbf{h}$ or $\overline{HK} = \frac{2}{7} (\mathbf{g} - \mathbf{h})$ oe or $\overline{GK} = \frac{5}{7} (\mathbf{h} - \mathbf{g})$ oe or M1 for correct route for \overline{MK}
7(a)(i)	4	1	
7(a)(ii)	16	1	FT 2 ^{their 4}
7(b)	3	1	
7(c)	$\frac{1}{4}$ oe	2	M1 for $\frac{2}{x} = 2^3$ or better
7(d)	$\frac{5-x}{2}$ oe final answer	2	M1 for x = 5 - 2y or $y + 2x = 5$ oe or $\frac{y}{2} = \frac{5}{2} - x$ oe
7(e)	$\frac{11x - x^2 + 2}{x}$ final answer	3	B2 for $\frac{x(10-x)+2+x}{x}$ oe single fraction or B1 for $x(10-x)+2+x$ oe or M1 for $10-x+\frac{2}{x}+1$
7(f)	[a =] 1 [b =] -21 [c =] 100	4	B3 for $x^2 - 21x + 100$ OR M1 for $(10-x)^2 - (10-(10-x))$ oe or better B2 for $[(10-x)^2] = 100 - 10x - 10x + x^2$ or B1 for three out of four terms of $[(10-x)^2] = 100 - 10x - 10x + x^2$ correct
7(g)	1024	2	M1 for $[x =] h(10)$ oe or better
8(a)	$[\cos =] \frac{15^2 + 8^2 - 20^2}{2.15.8}$	M2	M1 for $20^2 = 15^2 + 8^2 - 2.15.8\cos($)
	117.54 to 117.55	A2	A1 for $-\frac{37}{80}$ or $-\frac{111}{240}$ or $-[0].4625$

© UCLES 2022 Page 7 of 9

PUBLISHED

Question	Answer	Marks	Partial Marks
8(b)	53.2 or 53.19 to 53.23	2	M1 for $0.5 \times 8 \times 15 \times \sin(117.5)$ oe
8(c)	15.5 or 15.52 to 15.53	2	M1 for $15^2 + 4^2$ oe
8(d)	7.1 or 7.13 or 7.125 to 7.126	3	M2 for tan [P]= $\frac{4-3}{8}$ oe or for 7.1 or 7.13 or 7.125 to 7.126 seen or M1 for vertical line = $4-3$ soi After 0 scored SC1 for correct angle identified
8(e)	11.5 nfww or 11.48 to 11.49	5	B1 for height of 3.5 soi M2 for $15^2 + 4^2 - 2.15.4\cos(117.5)$ or M1 for $\cos 117.5 = \frac{15^2 + 4^2 - ()^2}{2.15.4}$ M1 for $\tan = \frac{3.5}{their}$ oe After M0 scored SC1 for correct angle identified
9(a)(i)	x(3x+4)+2(x-1)[=20]	M1	Correct expression with brackets unexpanded
	Leading to $3x^2 + 6x - 22 = 0$ with no errors or omissions	A1	Must see equated to 20 and brackets expanded first to award A1
9(a)(ii)	$\frac{-6 \pm \sqrt{6^2 - 4(3)(-22)}}{2.3} \text{ oe}$ or for $= -1 \pm \sqrt{1 + \frac{22}{3}}$ oe	B2	B1 for $\sqrt{6^2 - 4(3)(-22)}$ or $\frac{-6 + \text{or} - \sqrt{k}}{2.3}$ or $(x+1)^2 = k$ oe
	-3.887 and 1.887 cao	В2	B1 for one correct answer or for answers -3.89 or -3.88 or -3.886 or -3.8868 to -3.8867 and 1.88 or 1.89 or 1.886 or 1.8867 to 1.8868 or correct answers seen in working or -1.887 and 3.887 answers
9(a)(iii)	5.77 or 5.773 to 5.774	1	FTdep 2(positive $x + 1$) evaluated to 3 sig. fig. or more, dep on $x > 1$

© UCLES 2022 Page 8 of 9

PUBLISHED

Question	Answer	Marks	Partial Marks
9(b)	$y^2 + 3y - 40[=0]$ oe	B4	Oe 3 term quadratic M3 for $15y - 20(y - 2) = y(y - 2)$ oe Or M2 for $\frac{15}{y - 2} - \frac{20}{y} = 1$ oe Or M1 for $H(y - 2) = 15$ or $hy = 20$ soi
	(y+8)(y-5) = 0 oe	B2	Strict FT a three term quadratic B1FT for $(y+a)(y+b)$ where $ab = -40$ or $a+b=3$ or $y(y-5)+8$ $(y-5)$ or y(y+8)-5(y+8)
	5	B1	
10(a)(i)	4 or 5 or 7 or 8 or 9	1	
10(a)(ii)	[a=] 3, [b=] 10	2	$\mathbf{B1}$ for each or for a and b transposed
10(b)	$6x^5 - 30x^4$	B2	B1 for $6x^5$ or $-30x^4$
	their derivative = 0 .	M1	
	(0,0) and $(5,-3125)$	B2	B1 for $(5, -3125)$ or for $x = 0$ and $x = 5$

© UCLES 2022 Page 9 of 9

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/42

Paper 4 (Extended)

October/November 2022

2 hours 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

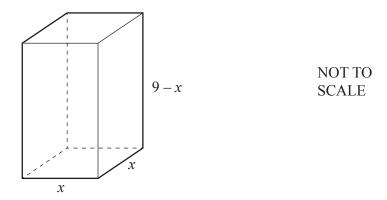
- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

2


1	(a) (i)	At a football club, season tickets are sold for seated areas and for standing areas. The cost of season tickets are in the ratio seated: standing $= 5:3$. The cost of a season ticket for the standing area is \$45.
		Find the cost of a season ticket for the seated area.
		\$[2]
	(ii)	In 2021, the value of the team's players was \$2.65 million. In 2022 this value has decreased by 12%.
		Find the value in 2022.
		\$ million [2]
	(iii)	The number of people at a football match is 1455. This is 6.25% of the total number of people allowed in the stadium.
		Find the total number of people allowed in the stadium.
		[2]
	(iv)	The average attendance increased exponentially by 4% each year for the three years from 2016 to 2019. In 2019 the average attendance was 1631.
		Find the average attendance for 2016.
		[3]

© UCLES 2022 0580/42/O/N/22

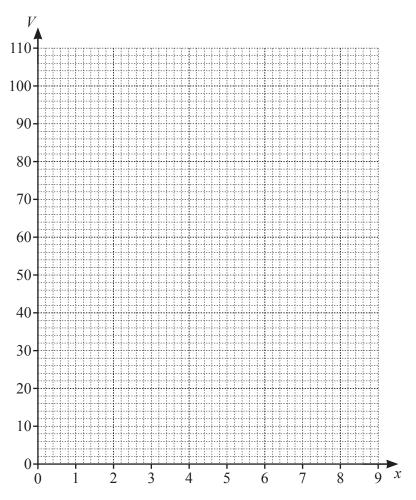
				3					
(b) Another club sells season tickets for individuals and for families. In 2018, the number of season tickets sold is in the ratio family: individual = $2:7$.									
	(i)	The number of family season tickets sold is x .							
		Write an ex	xpression, in	terms of x , for the num	mber of individual sea	son tickets sold.			
						[1]			
	(ii)			family season tickets s reases by 26.	old increases by 12 an	d the number of individual			
		Complete year.	the table by	writing expressions, in	terms of x , for the number of x ,	umber of tickets sold each			
			Year	Family tickets	Individual tickets				
			2018	x					
			2019						
						[2]			
((iii)	In 2019, the tickets sold		individual season tick	xets sold is 3 times the	e number of family season			
		Write an e	quation in <i>x</i> a	and solve it to find the	number of family tick	xets sold in 2018.			
					$x = \dots$	[4]			

4

2 All the lengths in this question are measured in centimetres.

The diagram shows a solid cuboid with a square base.

(a) The volume, $V \text{cm}^3$, of the cuboid is $V = x^2(9-x)$. The table shows some values of V for $0 \le x \le 9$.


х	0	1	2	3	4	5	6	7	8	9
V	0	8		54	80	100	108	98	64	0

(i) Complete the table.

[1]

- (ii) On the grid on the opposite page, draw the graph of $V = x^2(9-x)$ for $0 \le x \le 9$. [4]
- (iii) Find the values of x when the volume of the cuboid is $44 \,\mathrm{cm}^3$.

$$x =$$
 or $x =$ [2]

(b) (i) Show that the total surface area of the cuboid is $(36x-2x^2)$ cm².

[2]

(ii) Find the surface area when the volume of the cuboid is a maximum.

..... cm² [3]

6

3 Kai and Ann carry out a survey on the distances travelled, in kilometres, by 200 cars.

Kai completes this frequency table for the data collected.

Distance (dkm)	80 < <i>d</i> ≤ 100	$100 < d \leqslant 150$	$150 < d \leqslant 200$	200 < <i>d</i> ≤ 300	$300 < d \leqslant 400$
Frequency	7	33	76	52	32

(a) (i) Calculate an estimate of the mean.

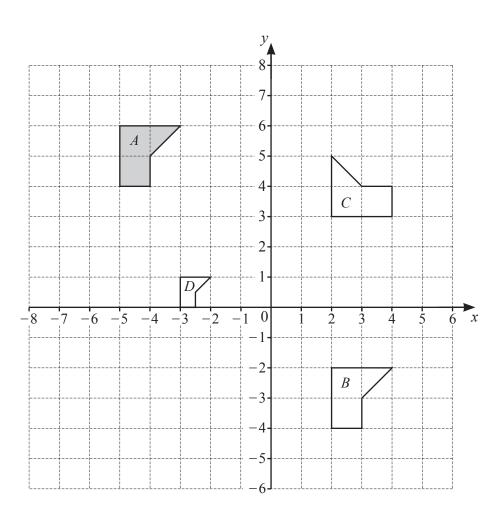
km	4
KIII	

(ii) Ann uses this frequency table for the same data. There is a different interval for the final group.

Distance (dkm)	80 < <i>d</i> ≤ 100	$100 < d \leqslant 150$	$150 < d \le 200$	200 < <i>d</i> ≤ 300	$300 < d \leqslant 360$
Frequency	7	33	76	52	32

Without calculating an estimate of the mean for this data, find the difference between Ann's and Kai's estimate of the mean.

You must show all your working.


km	[2]

© UCLES 2022 0580/42/O/N/22

Muhammad	Shafin	ur Rohman	(03247304567)	Aitchison Colle	201
munaninau	Juany	ui Neilliali	(U32413U4301)	/ Allulisuli Guli	зч

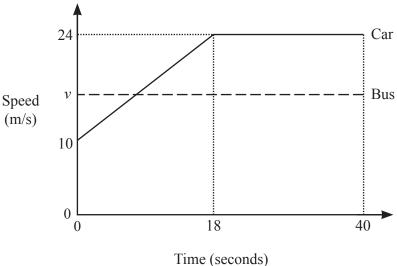
(iii)		A histogram is drawn showing the information in Kai's frequency table. The height of the block for the interval $200 < d \le 300$ is $2.6 \mathrm{cm}$.						
		Calculate the height of the block for each of the following intervals.						
		80 < <i>d</i> ≤ 100cm						
		$150 < d \le 200$						
		300 < <i>d</i> ≤ 400cm	[3]					
(b)	One	e car is picked at random.						
	Fine	d the probability that the car has travelled more than 300 km.						
			[1]					
(c)	Two	o of the 200 cars are picked at random.						
	Fine	d the probability that						
	(i)	both cars have travelled 150 km or less,						
			[2]					
	(ii)	one car has travelled more than 200 km and the other car has travelled 100 km or less.	[~]					
			[3]					

4

- (a) Describe fully the **single** transformation that maps
 - (i) shape A onto shape B,

.....[

(ii) shape A onto shape C,


.....[3

(iii) shape A onto shape D.

.....[3]

(b) On the grid, draw the image of shape A after a reflection in the line y = x + 8. [2]

5 (a) The diagram shows the speed–time graph for part of a journey for two vehicles, a car and a bus.

NOT TO **SCALE**

(i) Calculate the acceleration of the car during the first 18 seconds.

1	m/s^2 [1
---	------------

In the first 40 seconds the car travelled 134 m more than the bus.

Calculate the constant speed, v, of the bus.

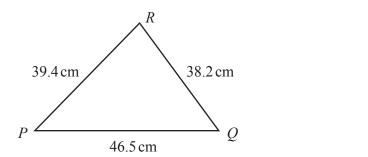
$$v = m/s [4]$$

(b) A train takes 10 minutes 30 seconds to travel 16240 m.

Calculate the average speed of the train. Give your answer in kilometres per hour.

		10		
6	(a)	Solve. $4x + 15 = 9$		
			<i>x</i> =[2	!]
	(b)	Factorise. $a^2 - 9$		
			[1	.]
	(c)	Write as a single fraction in its simplest form. $\frac{4a}{5} \div \frac{3ad}{10c}$		
			[3	;]
	(d)	$5^n + 5^n + 5^n + 5^n + 5^n = 5^m$		
		Find an expression for m in terms of n .		
			$m = \dots [2$	<u>'</u>]

$$m = \dots [2]$$


(e) Solve by factorisation. $4x^2 + 8x - 5 = 0$

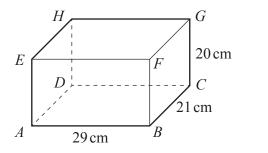
$$x = \dots$$
 or $x = \dots$ [3]

Muhammad	Shafia	ur Dohman	(02247204567)	Aitchicon	Collogi
Munammad	Snang	ur Kenman ((03247304567)	Altenison	College

(f)	(i)	y is directly proportional to $(x+3)^3$. When $x = 2$, $y = 13.5$.		
		Find x when $y = 108$.		
			<i>x</i> =	[3]
	(ii)	g is inversely proportional to the square of d . When d is halved, the value of g is multiplied by a	factor n.	
		Find <i>n</i> .		
(g)	Exp	pand and simplify. $(2x+3)(x-1)(x+3)$	<i>n</i> =	[2]
		(201-3)(0-1)(0-3)		
(h)	Fine	d the derivative, $\frac{dy}{dx}$, of $y = 3x^2 + 4x - 1$.		[3]
、 /		dx^{2}		
				[2
				E .

7 (a)

(i) Calculate angle *QPR*.


Angle
$$QPR = \dots$$
 [4]

NOT TO SCALE

(ii) Find the shortest distance from Q to PR.

 cm	[3]

(b) The diagram shows a cuboid.

(i) Calculate the length AG.

$$AG = \dots cm [3]$$

(ii) Calculate the angle between AG and the base ABCD.

North
North
North
North
North
North
North
North
North
North
North
North
North

The diagram shows the positions of a lighthouse, L, and two ships, K and M.

The bearing of L from K is 155° and KL = 112 km.

The bearing of *K* from *M* is 010° and angle $KML = 96^{\circ}$.

Find the bearing and distance of ship M from the lighthouse, L.

Bearing		
Distance	km	[5]

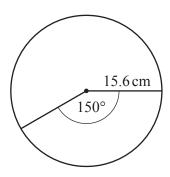
14

8

(a)	Find the coordinates of <i>B</i> .	
		Γ Δ .
	(, ,	[2.
(b)	Show that the equation of the perpendicular bisector of AB is $2y + 5x = 74$.	
		[4]
(c)	The perpendicular bisector of AB passes through the point N . The point N has coordinates $(2, n)$.	
	Find the value of n .	
	$n = \dots$	[1]
(d)	Points A, M and N form a triangle.	
	Find the area of the triangle.	
		[2]

© UCLES 2022 0580/42/O/N/22

- (a) On the diagram, sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$. [2]
- **(b)** Solve the equation $5\sin x + 4 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.


$$x = \dots$$
 or $x = \dots$ [3]

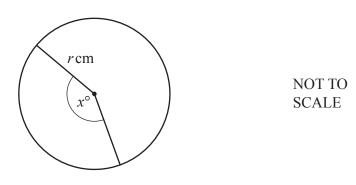
10	(a)	The lengths of the sides of a triangle are	e 11.4 cm,	14.8 cm and	15.7 cm,	all correct	to 1	decimal
		place.						

Calculate the upper bound of the perimeter of the triangle.

..... cm [2]

(b)

NOT TO SCALE


The diagram shows a circle, radius 15.6 cm. The angle of the minor sector is 150°.

Calculate the area of the minor sector.

..... cm² [2]

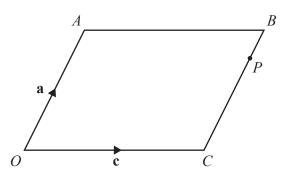
© UCLES 2022 0580/42/O/N/22

(c)

The diagram shows a circle, radius r cm and minor sector angle x° .

The **perimeter** of the major sector is three times the **perimeter** of the minor sector.

Show that
$$x = \frac{90(\pi - 2)}{\pi}$$
.


[4]

11 (a)
$$\left| \begin{pmatrix} 9m \\ 40m \end{pmatrix} \right| = \frac{205}{2}$$

Find the two possible values of m.

m = or [3]

(b)

NOT TO SCALE

OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

P is the point on CB such that CP : PB = 3 : 1.

- (i) Find, in terms of a and/or c, in their simplest form,
 - (a) \overrightarrow{AC} ,

$$\overrightarrow{AC} = \dots$$
 [1]

(b) \overrightarrow{CP} ,

$$\overrightarrow{CP} = \dots$$
 [1]

(c) \overrightarrow{OP} .

$$\overrightarrow{OP} = \dots$$
 [1]

	Muhammad Shafid	ur Rehman	(03247304567)	Aitchison	College
--	------------------------	-----------	---------------	-----------	---------

OP and AB are extended to meet at Q .
Find the position vector of Q .

.....[2]

© UCLES 2022 0580/42/O/N/22

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 0580/42/O/N/22

Cambridge IGCSE™

MATHEMATICS		0580/42
Paper 4 (Extended)	Octo	ber/November 2022
MARK SCHEME		
Maximum Mark: 130		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

Muhammad Shafiq ur Rehman (03247304567) Aitchison College Cambridge IGCSE – Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

© UCLES 2022 Page 2 of 14

October/November 2022

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	as-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

correct answer only cao

dependent dep

follow through after error FT isw ignore subsequent working

or equivalent oe Special Case SC

nfww not from wrong working

seen or implied soi

© UCLES 2022 Page 3 of 14

PUBLISHED

Question	Answer	Marks	Partial Marks
1(a)(i)	75	2	M1 for $\frac{45}{3}$ [× <i>k</i>] where <i>k</i> is 1, 5 or 8
1(a)(ii)	2.332 oe	2	M1 for 2.65 [million] $\times \left(1 - \frac{12}{100}\right)$ oe or B1 for 0.318[million] seen
1(a)(iii)	23 280 cao	2	M1 for $\frac{6.25}{100} \times x = 1455$ or better
1(a)(iv)	1450 or 1449 to 1450	3	M2 for $1631 = k \left(1 + \frac{4}{100}\right)^3$ oe or better or B1 for $\left(1 + \frac{4}{100}\right)^3$ oe seen or M1 for $1631 = k \left(1 + \frac{4}{100}\right)^n$, $n > 0$ oe
1(b)(i)	$\frac{7x}{2}$ oe	1	
1(b)(ii)	$x + 12 \frac{7x}{2} - 26 \text{ oe}$ final answer	2	FT their (b)(i) B1 for $x + 12$ B1 for their $\frac{7x}{2} - 26$

© UCLES 2022 Page 4 of 14

PUBLISHED

Question	Answer	Marks	Partial Marks
1(b)(iii)	$\frac{7x}{2} - 26 = 3(x + 12)$ oe leading to 124	4	M1dep for $their\left(\frac{7x}{2} - 26\right) = 3 \times their (x + 12)$ oe M2dep for isolating <i>x</i> terms, dep on eqn with term in <i>x</i> and constant on each side and with a bracket or fraction.
			or M1dep for correctly removing brackets or dealing with fractions, dep on eqn with term in <i>x</i> and constant on each side and with a bracket or fraction.
2(a)(i)	28	1	
2(a)(ii)	Correct curve	4	B3FT for 9 or 10 correct points or B2FT for 7 or 8 correct points or B1FT for 5 or 6 correct points
2(a)(iii)	2.5 to 2.8 8.2 to 8.5	2	B1 for each value
2(b)(i)	$2x^2 + 4x(9-x)$ oe	M1	Accept the sum of individual areas if done in smaller parts
	$2x^2 + 36x - 4x^2$ oe Leading to $36x - 2x^2$	A1	With intermediate step shown and brackets removed with no errors or omissions
2(b)(ii)	144	3	B1 for $x = 6$ identified from graph or using calculus
			M1 for $36 \times their6 - 2 \times (their 6)^2$

© UCLES 2022 Page 5 of 14

PUBLISHED

Question	Answer	Marks	Partial Marks
3(a)(i)	211.275	4	M1 for mid-points soi (90, 125, 175, 250, 350)
			M1 for use of Σfm with m in correct interval including both boundaries
			M1 for (dep on 2nd M1) for $\Sigma fm \div 200$
3(a)(ii)	$32 \times 350 - 32 \times 330$ oe or better, or the reverse of this	M1	
	3.2 or - 3.2 final answer	B1	
3(a)(iii)	1.75	3	B2 for two correct heights
	7.6		or B1 for one correct height or 3 correct frequency densities
	1.6		or M1 for scale factor of 5 or 0.2
3(b)	$\frac{4}{25}$ oe	1	
3(c)(i)	$\frac{39}{995}$ oe	2	M1 for $\frac{40}{200} \times \frac{39}{199}$ oe
3(c)(ii)	$\frac{147}{4975}$ oe	3	
	4975		M2 for $[2\times]$ $\frac{84}{200} \times \frac{7}{199}$ oe
			or B1 for $\frac{84}{200}$ and $\frac{7}{199}$ or $\frac{84}{199}$ and $\frac{7}{200}$ oe
			If 0 scored, SC1 for answer $\frac{147}{5000}$ oe

© UCLES 2022 Page 6 of 14

Question	Answer	Marks	Partial Marks
4(a)(i)	Translation $\begin{pmatrix} 7 \\ -8 \end{pmatrix}$ oe	2	B1 for each
4(a)(ii)	Rotation 90° [anticlockwise] oe (0, 8)	3	B1 for each
4(a)(iii)	Enlargement [sf] $\frac{1}{2}$ oe [centre] $(-1, -4)$	3	B1 for each
4(b)	Image at (-4, 4) (-3, 4) (-2, 5) (-2, 3) (-4, 3)	2	B1 for the line $y = x + 8$ drawn soi long enough to be fit for purpose or correct size and orientation but wrong position

© UCLES 2022 Page 7 of 14

Question	Answer	Marks	Partial Marks
5(a)(i)	$\frac{14}{18}$ oe	1	
5(a)(ii)	17.5	4	M3 for $\frac{1}{2}(10+24)18+22\times24-134=40\nu$ oe or M2 for $\frac{1}{2}(10+24)18+22\times24$ oe or B2 for [distance covered by bus =] 700 or M1 for correct method for any partial area for the car
			or for 40v
5(b)	92.8 or $92\frac{4}{5}$	3	M1 for $\frac{figs162[4]}{their10 \min 30 sec}$ oe
			M1 for correct conversion to km/h, e.g. $\times \frac{60}{1000}$

© UCLES 2022 Page 8 of 14

PUBLISHED

Question	Answer	Marks	Partial Marks
6(a)	$-1.5 \text{ or } -1\frac{1}{2} \text{ or } -\frac{3}{2}$	2	M1 for $4x = 9 - 15$ or $x + \frac{15}{4} = \frac{9}{4}$
6(b)	(a-3)(a+3) final answer	1	
6(c)	$\frac{8c}{3d}$ final answer	3	B2 for $\frac{8ac}{3ad}$ or $\frac{40c}{15d}$ or $\frac{4}{1} \times \frac{2c}{3d}$ seen or for correct answer seen then spoiled or M1 for $\frac{4a}{5} \times \frac{10c}{3ad}$ or $\frac{8ac}{10c} \div \frac{3ad}{10c}$ oe
6(d)	n+1 final answer	2	M1 for 5×5^n or 5^{n+1} seen
6(e)	(2x-1)(2x+5) [= 0] oe	В2	M1 for $2x(2x + 5) - [1](2x + 5) [= 0]$ or $2x(2x - 1) + 5(2x - 1) [= 0]$ or for $(2x + m)(2x + n) [= 0]$ with and $mn = -5$ or $n + m = 4$
	$\frac{1}{2}$ or 0.5 and -2.5 or -2 $\frac{1}{2}$ or - $\frac{5}{2}$	B1	
6(f)(i)	7	3	M1 for $y = k(x + 3)^3$ or better M1 for $108 = their k(x + 3)^3$
6(f)(ii)	4	2	M1 for $\left(\frac{1}{2}\right)^2$ oe or $\frac{k}{\frac{1}{4}d^2}$ oe seen or better

© UCLES 2022 Page 9 of 14

Question	Answer	Marks	Partial Marks
6(g)	$2x^3 + 7x^2 - 9 \text{ final answer}$	3	B2 for correct expansion unsimplified or for simplified 4 term expression of correct form with 3 terms correct or B1 for one pair of brackets expanded with at least 3 terms out of 4 correct
6(h)	6x + 4	2	B1 for $6x$ or 4 or $6x + 4$ with one extra term seen

© UCLES 2022 Page 10 of 14

PUBLISHED

Question	Answer	Marks	Partial Marks
7(a)(i)	52.[0] or 52.01	4	M2 for $[\cos P =] \frac{39.4^2 + 46.5^2 - 38.2^2}{2 \times 39.4 \times 46.5}$ oe or M1 for $38.2^2 = 39.4^2 + 46.5^2 - 2 \times 39.4 \times 46.5 \times \cos P$ oe A1 for 0.616 or 0.6155
7(a)(ii)	36.6 or 36.64 to 36.65	3	M2 for $\frac{d}{46.5} = \sin(their 52.01)$ oe or M1 for recognition that the line from Q is perpendicular to PR
7(b)(i)	41[.0] or 41.01 nfww	3	M2 for $29^2 + 21^2 + 20^2$ oe or better or M1 for $29^2 + 21^2$ oe or $29^2 + 20^2$ oe or $21^2 + 20^2$ oe or better
7(b)(ii)	29.2 or 29.18 to 29.2	3	M2 for $sin[GAC] = \frac{20}{their AG}$ oe or M1 for angle GAC identified
7(c)	bearing 286	B2	B1 for angle $MLK = 49$ or for angle $MKL = 35$ correctly identified or angle from North to $ML = 106$
	distance 64.6 or 64.59	ВЗ	M2 for $\frac{112 \times \sin(their35)}{\sin(96)}$ oe or M1 for the implicit form

© UCLES 2022 Page 11 of 14

Question	Answer	Marks	Partial Marks
8(a)	(22, 11)	2	B1 for each value
8(b)	$\frac{their11-3}{their22-2}$ oe or better	M1	
	$-\frac{1}{theirm}$	M1	
	Substitution of (12, 7) into $y = (their \ m)x + c$	M1	Accept $y - 7 = their m(x - 12)$ oe
	leading to $2y + 5x = 74$ final answer	A1	Without error or omission
8(c)	32	1	
8(d)	145	2	M1 for $\frac{1}{2} \times (their\ 32 - 3) \times 10$ oe or
			$\frac{1}{2} \times \sqrt{(7-3)^2 + (12-2)^2} \times \sqrt{(their 32-7)^2 + (2-12)^2} \text{ oe}$

© UCLES 2022 Page 12 of 14

PUBLISHED

Question	Answer	Marks	Partial Marks
9(a)	Correct sketch to go through (0, 0), and (360, 0)	2	
	y 0 360° x		M1 for correct sine curve shape through the origin or for almost correct sketch fitting all tramlines but with an omission at either end or incorrect curvature in one place only
9(b)	233.1 or 233.13 and 306.9 or 306.86 to 306.87	3	B2 for one correct angle or M1 for $\sin x = -0.8$ oe
	300.9 01 300.80 to 300.87		If 0 scored SC1 for 2 reflex angles that add to 540 or two non-reflex angles that add to 180
10(a)	42.05 final answer	2	M1 for 11.4 + 0.05 oe or 14.8 + 0.05 oe or 15.7 + 0.05 oe
10(b)	319 or 318.5 to 318.6	2	M1 for $\frac{150}{360} \times \pi \times 15.6^2$ oe
10(c)	$\frac{360 - x}{360} \times 2\pi r + 2r = 3\left(\frac{x}{360} \times 2\pi r + 2r\right) \text{ oe}$	M2	M1 for $\frac{x}{360} \times 2\pi r$ oe seen or $\frac{360 - x}{360} \times 2\pi r$ oe seen
	$\frac{4x}{360} \times 2\pi[r] = 2\pi[r] - 4[r] \text{ oe}$	M1	i.e. M mark for isolating and collecting terms in x
	Leading to $\frac{90(\pi-2)}{\pi}$	A1	With no errors or omissions

© UCLES 2022 Page 13 of 14

Question	Answer	Marks	Partial Marks
11(a)	2.5 and – 2.5 oe	3	M2 for $1681m^2 = \frac{42025}{4}$ oe
			or M1 for $(9m)^2 + (40m)^2$ oe
11(b)(i)(a)	$\mathbf{c} - \mathbf{a}$ final answer	1	
11(b)(i)(b)	$\frac{3}{4}$ a final answer	1	
11(b)(i)(c)	$\mathbf{c} + \frac{3}{4}\mathbf{a}$ final answer	1	FT c + <i>their</i> (b)(i)(b) , must be a vector in terms of a and/or c in its simplest form
11(b)(ii)	$\mathbf{a} + \frac{4}{3}\mathbf{c}$ oe	2	B1 for $[\overrightarrow{BQ} =]$ $\frac{1}{3}$ c or $[\overrightarrow{AQ} =]$ $\frac{4}{3}$ c or M1 for a correct route
			or for answer $\mathbf{a} + k\mathbf{c}$ oe, where $k > 1$

© UCLES 2022 Page 14 of 14

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/43

Paper 4 (Extended)

October/November 2022

2 hours 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

2

(a) Here are the ingredients needed to make a pasta bake to serve 12 people.

1

		250g butter	
		600g pasta	
		460g mushrooms	
		280g cheese	
		800 ml milk	
(i)	Find the mass of the chee	ese as a percentage of the ma	ass of the mushrooms.
			% [1]
(ii)	Find the mass of butter n	eeded to make a pasta bake	
			g [2]
(iii)	Monica has 2.2 litres of r	milk and 1.5 kg of each other	r ingredient.
	Calculate the greatest nu	mber of people she can serve	e with pasta bake.
			[3]
			[3]

© UCLES 2022 0580/43/O/N/22

3

In 2 This	019, a packet of pasta cost \$2.40. s was an increase of 25% of the cost of a packet in 2018.
(i)	Work out the cost in 2018.
(ii)	\$
A sl	ta is sold in packets with width 11.5 cm, correct to the nearest 0.5 cm. hop places these packets in a single line on a shelf of length 2 m, correct to the nearest 0.1 m.
	d the maximum number of these packets that will fit along this shelf. n must show all your working.
	[3]
	This (i) Pass A sl Find

4

2 (a) Simplify fully.

(i)	p^3	×	n	1	1
(1)	Ρ	$^{\sim}$	Ρ		

(ii) $\frac{18m^6}{3m^2}$

.....[1]

.....[2]

(iii) $\left(\frac{27x^9y^{27}}{64}\right)^{-\frac{1}{3}}$

.....[3]

(b) A sequence has *n*th term $3n^2$.

Write down the first 3 terms of this sequence.

(c) Find the *n*th term for each of these sequences.

(i) 13, 16, 19, 22, 25, ...

.....[2]

(ii) 3, 17, 55, 129, 251, ...

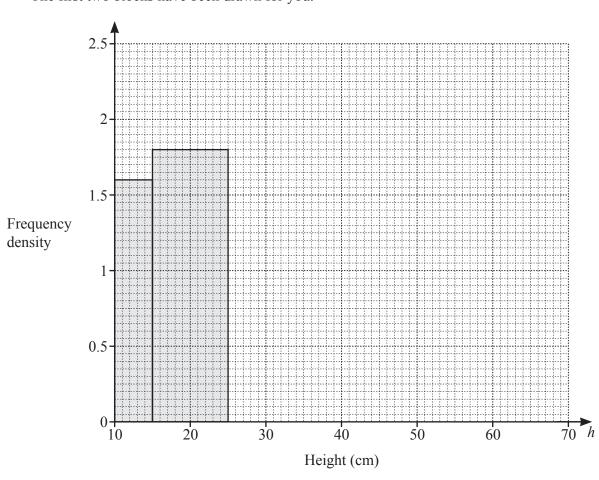
.....[2]

Muhammad Shafic	ur Rehman	(03247304567)	Aitchison	College

(d) Solve.

$$\frac{3x - 22}{4} = 23$$

$$x = \dots$$
 [3]

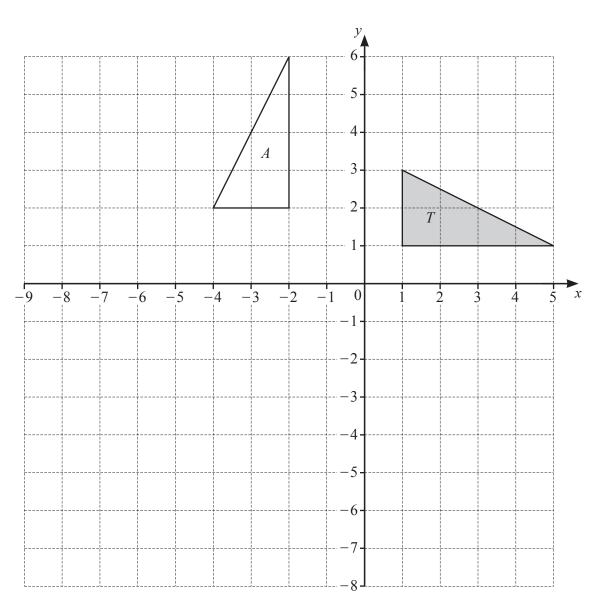

(e) Use the quadratic formula to solve $3x^2 + 8x - 20 = 0$. Show all your working and give your answers correct to 2 decimal places.

$$x = \dots, x = \dots$$
 [4]

3 The height, $h \, \text{cm}$, of each of 100 plants is recorded. The table shows information about the heights of these plants.

Height (h cm)	$10 < h \le 15$	15 < h ≤ 25	$25 < h \leqslant 40$	$40 < h \leqslant 60$	$60 < h \leqslant 70$
Frequency	8	18	28	33	13

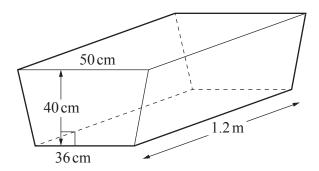
(a) Complete the histogram to show this information. The first two blocks have been drawn for you.



(b) Calculate an estimate of the mean height.

.....cm [4]

[3]


© UCLES 2022 0580/43/O/N/22

- (a) Draw the reflection of triangle T in the line y = -2. [2]
- **(b)** Draw the enlargement of triangle T with scale factor $\frac{1}{2}$ and centre of enlargement (-5, -3). [2]
- (c) Describe fully the **single** transformation that maps triangle T onto triangle A.

.....

5

NOT TO SCALE

The diagram shows a water trough in the shape of a prism. The prism has a cross-section in the shape of an isosceles trapezium.

The trough is completely filled with water.

(a) Show that the volume of water in the trough is 206.4 litres.

[3]

(b) The water from the trough is emptied at a rate of 600 ml per second.

Calculate the time taken, in minutes and seconds, for the trough to be emptied.

..... minutes seconds [3]

- (c) All the water from the trough is emptied into a vertical cylindrical tank. The depth of the water in the tank is 84 cm.
 - (i) Calculate the radius of the tank.

.....cm [3]

(ii) The tank is 60% full.

Calculate the height of the tank.

(d)

NOT TO SCALE

1.2 m

A steel rod AM is placed inside the empty water trough as shown in the diagram. A is a vertex at the base of the isosceles trapezium and M is the midpoint of the top edge on the opposite face.

Calculate the length of the steel rod, AM.

36 cm

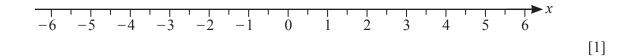
A

10

6 (a)
$$P = 5k^2 - 7$$

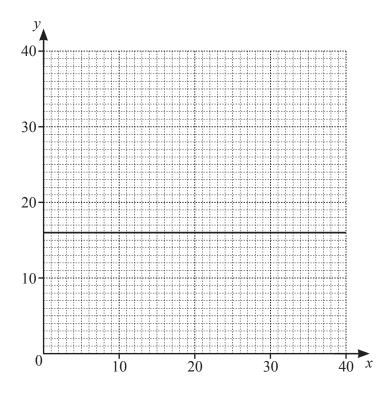
(i) Find the value of P when k = 3.

$$P = \dots$$
 [2]


(ii) Rearrange the formula to make k the subject.

$$k = \dots [3]$$

(b) (i) Solve.


$$x-3 \le 5x+7$$

(ii) Show your answer to part (b)(i) on the number line.

© UCLES 2022 0580/43/O/N/22

(c) The line y = 16 is drawn on the grid.

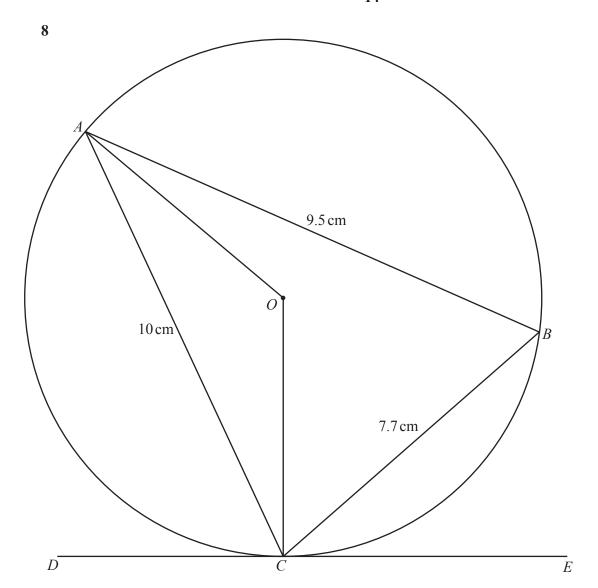
The region R satisfies the following inequalities.

$$y \ge 16 \qquad x > 2 \qquad 2x + 3y \ge 72 \qquad y \le 32 - x$$

- (i) By drawing three more lines and shading the region **not required**, find and label region R. [6]
- (ii) Find the integer coordinates (x, y) in the region R that give the maximum value of 2x + y.

(.....) [2]

12


7

Reg	an is	playing	a gan	ne with	these s	ix numb	er card	S.						
	_	-3		-2		2		3		5		7		
(a)	She		wo cai	ds at ra	andom,	withou	t replac	ement,	and mu	ltiplies	the two	numbei	rs to giv	ve a
	Fine	d the pro	babili	ty that										
	(i)	the sco	ore is 3	5										
														[3]
	(ii)	the sco	ore is a	positiv	e numb	oer.								
														[3]

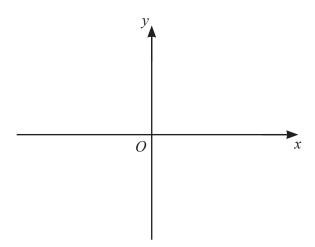
© UCLES 2022 0580/43/O/N/22

Muhammad	Shafin	ur Rohman	(03247304567)	Aitchison	College
wullallillau	Silaliu	ui Neilliali	10324/30430/	AILCIIISUII	College

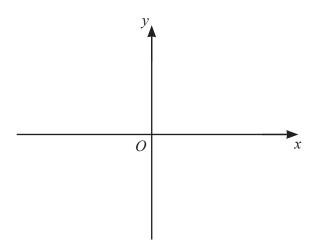
(b)	Regan now takes three cards at random from the six cards, without replacement, and adds the three numbers to give a total.
	Find the probability that her total is 5.
	T.4.1
	[4]

NOT TO SCALE

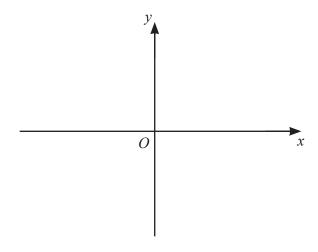
A, B and C are points on the circle, centre O. DE is a tangent to the circle at C. AC = 10 cm, AB = 9.5 cm and BC = 7.7 cm.


(a) Show that angle $ABC = 70.2^{\circ}$, correct to 1 decimal place.

[4]


(b) Fin	£		
(i)	angle AOC		
(ii)	angle ACO	Angle <i>AOC</i> =	[1]
(iii)	angle ACD.	Angle <i>ACO</i> =	[1]
(c) Cal	culate the radius, <i>OC</i> , of the circle.	Angle $ACD = \dots$	[1]
(d) Cal	culate the area of triangle ABC as a percen	OC =	[3]

9 (a) Sketch the following graphs.
On each sketch, indicate any intercepts with the axes.


(i)
$$3x - 4y = 12$$

(ii)
$$y = x^2 - 3x - 4$$

(iii)
$$y = 6^x$$

[2]

[2]

[4]

Muhammad S	hafig ur Reh	man (03247)	304567) Aitch	nison College

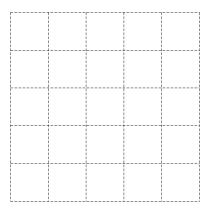
(b)	(i)	Find the derivative,	$\frac{\mathrm{d}y}{\mathrm{d}x}$, of	$y = 5 + 8x - \frac{4}{3}x^3.$
-----	-----	----------------------	--	--------------------------------

.....[2]

(ii) Find the gradient of $y = 5 + 8x - \frac{4}{3}x^3$ at x = -1.

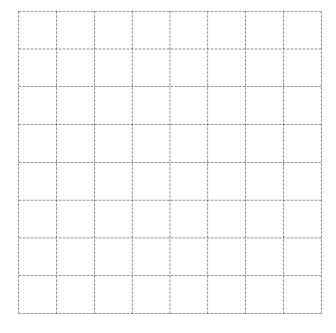
.....[2]

(iii) A tangent is drawn to the graph of $y = 5 + 8x - \frac{4}{3}x^3$. The gradient of the tangent is -28.

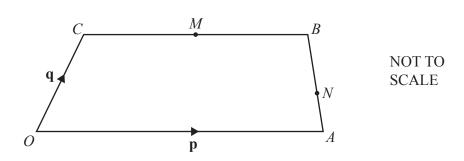

Find the coordinates of the two possible points where this tangent meets the graph.

(.....)

(.....) [5]


10 (a)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$

(i) On the grid, draw and label vector 2a.


[1]

(ii) On the grid, draw and label vector $(\mathbf{a} - \mathbf{b})$.

[2]

(b)

OABC is a trapezium with *OA* parallel to *CB*.

M is the midpoint of CB and N is the point on AB such that AN : NB = 1 : 2.

O is the origin, $\overrightarrow{OA} = \mathbf{p}$, $\overrightarrow{OC} = \mathbf{q}$ and $\overrightarrow{CB} = \frac{3}{4}\mathbf{p}$.

- (i) Find, in terms of p and/or q, in its simplest form
 - (a) \overrightarrow{OB}

$\overrightarrow{OR} =$		Г17
OD $-$	•••••	[T]

(b) \overrightarrow{AB}

$$\overrightarrow{AB} = \dots [2]$$

(c) \overrightarrow{MN} .

$$\overrightarrow{MN} = \dots$$
 [3]

(ii) OA and MN are extended to meet at G.

Find the position vector of G in terms of \mathbf{p} .

.....[2]

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 0580/43/O/N/22

Cambridge IGCSE™

MATHEMATICS
Paper 4 (Extended)
MARK SCHEME
Maximum Mark: 130
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

© UCLES 2022 Page 2 of 13

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	Maths-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

© UCLES 2022 Page 3 of 13

Question	Answer	Marks	Partial Marks
1(a)(i)	60.9 or 60.86 to 60.87	1	
1(a)(ii)	375	2	M1 for $\frac{250}{12}$ [× 18] oe
1(a)(iii)	30 nfww	3	M1 for figs2200 ÷ 800 [× 12]oe M1 for 1500 ÷ 600 [× 12] oe
1(b)(i)	1.92	2	M1 for $k \times \left(1 + \frac{25}{100}\right) = 2.4[0]$ oe or better
1(b)(ii)	$43.75 \text{ or } 43\frac{3}{4}$	3	
			M2 for $\left(\left(1 + \frac{25}{100}\right) \times \left(1 + \frac{15}{100}\right) [-1]\right) [\times 100]$ oe
			or $\left(1 + \frac{25}{100}\right) \times \left(1 + \frac{15}{100}\right) \times 100 \left[-100\right]$
			or for $\frac{2.40 \times \left(1 + \frac{15}{100}\right)}{their(\mathbf{b})(\mathbf{i})} \times 100 [-100] \text{ oe}$
			or M1 for $2.40 \times \left(1 + \frac{15}{100}\right)$ or $\left(1 + \frac{25}{100}\right) \times \left(1 + \frac{15}{100}\right)$ oe
1(c)	18 nfww	3	M2 for $\frac{200 \text{ to } 210}{11.5 - 0.25}$ or $\frac{200 + 5}{11 \text{ to } 11.5}$ oe
			or M1 for 200 + 5, 200 – 5, 11.5 + 0.25 or 11.5 – 0.25

© UCLES 2022 Page 4 of 13

PUBLISHED

Question	Answer	Marks	Partial Marks
2(a)(i)	p^{14} final answer	1	
2(a)(ii)	$6m^4$ final answer	2	B1 for $6m^k$ or km^4 in final answer or correct answer seen and spoilt
2(a)(iii)	$\frac{4}{3x^3y^9} \text{ or } \frac{4x^{-3}y^{-9}}{3} \text{ final answer}$	3	B2 for correct answer seen and spoilt or 2 correct elements in final answer or B1 for one of $\frac{4}{3}$ or $\frac{3}{4}$ oe or x^3 or y^9 seen
2(b)	3, 12, 27	2	B1 for 12 or 27
2(c)(i)	3n + 10 oe final answer	2	B1 for $3n + k$ oe or $jn + 10$ oe $(j \neq 0)$ or for correct expression shown in working and then spoilt
2(c)(ii)	$2n^3 + 1$ oe final answer	2	B1 for 3rd diff = 12 (both needed) or for cubic answer or for correct expression shown in working and then spoilt
2(d)	38	3	M2 for $3x = 4 \times 23 + 22$ or M1 for $3x - 22 = 4 \times 23$ or for $\frac{3x}{4} = 23 + \frac{22}{4}$ oe
2(e)	$ \frac{-8 \pm \sqrt{8^2 - 4(3)(-20)}}{2 \times 3} $ or $ \frac{-8}{2 \times 3} \pm \sqrt{\frac{8^2}{4 \times 3^2} - \frac{(-20)}{3}} $ or better	B2	B1 for $\sqrt{8^2 - 4(3)(-20)}$ oe or $\frac{-8 + \sqrt{q}}{2 \times 3}$ oe or $\frac{-8 - \sqrt{q}}{2 \times 3}$ oe or both
	- 4.24, 1.57 final answers	B2	B1 for each If B0, SC1 for answers – 4.2 or –4.23 or –4.240 to – 4.239 and 1.6 or 1.572 to 1.573 or – 4.24 and 1.57 seen in working or for –1.57 and 4.24 as final answer

© UCLES 2022 Page 5 of 13

PUBLISHED

Question	Answer	Marks	Partial Marks
3(a)	Correct histogram	3	B1 for each correct block If 0 scored, SC1 for two of $\frac{28}{15}$, $\frac{33}{20}$, $\frac{13}{10}$ or 1.87 or 1.866 to 1.867, 1.65, 1.3
3(b)	38.65	4	M1 for 12.5, 20, 32.5, 50, 65 soi M1 for $\sum fx$ where x is in the correct interval including boundaries M1dep for $\sum fx \div 100$
4(a)	Triangle drawn at $(1, -5)$, $(1, -7)$, $(5, -5)$	2	B1 for reflection in any horizontal line If 0 scored, SC1 for reflection in $x = -2$
4(b)	Triangle drawn at $(-2, 0)$, $(-2, -1)$, $(0, -1)$	2	B1 for correct size and orientation but wrong position
4(c)	Rotation 90 [anticlockwise] oe	3	B1 for each
	[centre] (-1,0)		

© UCLES 2022 Page 6 of 13

PUBLISHED

Question	Answer	Marks	Partial Marks
5(a)	$\left(\frac{(36+50)\times40}{2}\right)\times120 \text{ oe}$ or $\left(\frac{(0.36+0.5)\times0.4}{2}\right)\times1.2 \text{ oe}$	M2	M1 for $\frac{(36+50)\times40}{2}$ oe or $\frac{(0.36+0.5)\times0.4}{2}$ oe
	206400 ÷ 1000 = 206.4 or 0.2064 × 1000 = 206.4 nfww	A1	Must see an explicit conversion
5(b)	5 [minutes] 44 seconds	3	B2 for 344 [seconds] oe 5.73[mins] or M1 for figs206.4 ÷ figs 6 oe
5(c)(i)	28[.0] or 27.96 to 27.97	3	M2 for $[r^2=]$ $\frac{\text{figs } 2064}{(figs 84)\pi}$ or M1 for $\pi r^2 \times figs 84 = \text{figs } 2064$
5(c)(ii)	140 cao	2	M1 for $0.6h = 84$ oe ALT method M1 for $\pi \times (their (\mathbf{c})(\mathbf{i}))^2 \times h = figs 206400 \div 0.6$ oe
5(d)	128 or 127.7 to 127.8	4	B3 for $40^2 + 120^2 + 18^2$ oe OR B1 for horizontal length 18 soi M1 for any correct attempt at 2-dimensional Pythagoras' $18^2 + 120^2$, $120^2 + 40^2$, $18^2 + 40^2$

© UCLES 2022 Page 7 of 13

PUBLISHED

Question	Answer	Marks	Partial Marks
6(a)(i)	38	2	M1 for $5 \times 3^2 - 7$ oe
6(a)(ii)	$[\pm]\sqrt{\frac{P+7}{5}}$ oe final answer	3	M1 for $P + 7 = 5k^2$ or $\frac{P}{5} = k^2 - \frac{7}{5}$ M1 for $k^2 = \dots$ FT <i>their</i> first step M1 for square root to final answer Max M2 for incorrect answer
6(b)(i)	$x \ge -2.5$ final answer	2	M1 for $-4x$ ≤ 7 + 3 or better
6(b)(ii)	-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	1	FT their inequality in (b)(i)
6(c)(i)	x = 2 broken line	B1	
	y = 32 - x solid line	B1	
	2x + 3y = 72 solid line	B2	B1 for line passing through (0, 24) or (36, 0)
	Correct region indicated cao	B2	B1 for region satisfying 3 of the inequalities
6(c)(ii)	(16, 16)	2	M1 for substitution into $2x + y$ for any integer point in <i>their</i> region

© UCLES 2022 Page 8 of 13

Question	Answer	Marks	Partial Marks
7(a)(i)	$\frac{1}{15}$ oe	3	M2 for $2 \times \frac{1}{6} \times \frac{1}{5}$ oe
			or M1 for $\frac{1}{6} \times \frac{1}{5}$ oe
			or list or indication of 2 correct pairs
			If 0 scored, SC1 for answer $\frac{1}{18}$ oe
7(a)(ii)	$\frac{7}{15}$ oe	3	M2 for $\left(\frac{4}{6} \times \frac{3}{5}\right) + 2\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe or $14\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe
			or $1-2\left(\frac{2}{6}\times\frac{4}{5}\right)$
			or M1 for $\left(\frac{4}{6} \times \frac{3}{5}\right)$ or $2\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe or $2\left(\frac{2}{6} \times \frac{4}{5}\right)$
			or correct identification of 14 pairs 5
			If 0 scored, SC1 for answer $\frac{5}{9}$
7(b)	$\frac{1}{10}$ oe nfww	4	M3 for $6\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right) + 6\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ oe
			or M2 for $6\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ oe or $2\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ oe
			or M1 for $k\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ where k is an integer and $1 \le k \le 12$ but
			not $k = 2$ or $k = 6$ or identifies -2 , 2 and 5 or -3 , 3 and 5 as the 3 cards needed
			If 0 scored, SC1 for answer $\frac{1}{18}$

Page 9 of 13

PUBLISHED

Question	Answer	Marks	Partial Marks
8(a)	[cos $B = $] $\frac{9.5^2 + 7.7^2 - 10^2}{2 \times 9.5 \times 7.7}$ oe	M2	M1 for $10^2 = 9.5^2 + 7.7^2 - 2 \times 9.5 \times 7.7 \cos B$ oe or better
	70.206 to 70.207 or 70.21 to 70.22	A2	A1 for $\frac{2477}{7315}$ oe or 0.339 or 0.3386
8(b)(i)	140.4	1	
8(b)(ii)	19.8	1	$\mathbf{FT} (180 - their (\mathbf{b})(\mathbf{i})) \div 2$
8(b)(iii)	70.2	1	FT 90 – <i>their</i> (b)(ii)
8(c)	5.31 or 5.314 to 5.315	3	M2 for $\frac{5}{\cos their(\mathbf{b})(\mathbf{ii})}$ oe or M1 for $\frac{5}{r} = \cos(their(\mathbf{b})(\mathbf{ii}))$ oe
8(d)	38.8 or 38.9 or 38.78 to 38.85	4	M3 for $\frac{0.5 \times 9.5 \times 7.7 \times \sin 70.2}{\pi \times (their (\mathbf{c}))^2} [\times 100]$ OR M1 for $0.5 \times 9.5 \times 7.7 \times \sin 70.2$ M1 for $\pi \times (their (\mathbf{c}))^2$

© UCLES 2022 Page 10 of 13

October/November 2022

PUBLISHED

Question	Answer	Marks	Partial Marks
9(a)(i)	Correct sketch of $3x - 4y = 12$ with $y = -3$ and $x = 4$ indicated on axes	2	B1 for line with positive gradient
9(a)(ii)	Correct sketch of $y = x^2 - 3x - 4$ with $(0, -4)$ indicated as y – intercept and $x = -1$ and $x = 4$ indicated as roots Minimum in fourth quadrant, not at $x = 0$	4	B3 for correct sketch with one value omitted or incorrect or for a poor sketch with all 3 intercepts correct. or B2 for roots $x = -1$ and $x = 4$ soi with no extra roots or for correct shape with $y = -4$ indicated or B1 for correct shape or for $(x - 4)(x + 1)$ shown or for incorrect sketch with $(0, -4)$ indicated as $y - 1$ intercept

© UCLES 2022 Page 11 of 13

Question	Answer	Marks	Partial Marks
9(a)(iii)	Correct sketch of $y = 6^x$ with y-intercept indicated at $(0, 1)$	2	B1 for increasing exponential graph seen on both sides of the y-axis.
9(b)(i)	$8-4x^2$ [+ 0]	2	B1 for two terms correct and one extra incorrect term or for one of two terms correct or for correct answer seen and spoilt
9(b)(ii)	4	2	M1 for substitution of $x = -1$ into <i>their</i> (b)(i)
9(b)(iii)	(3, -7) and (-3, 17)	5	B4 for $(3, -7)$ or $(-3, 17)$ or B3 for $x = \pm 3$ or M2 for $x^2 = 9$ or x

© UCLES 2022 Page 12 of 13

PUBLISHED

Question	Angyron	Marks	Partial Marks
Question	Answer	Marks	Faruai Marks
10(a)(i)	2a drawn correctly with direction arrow	1	
10(a)(ii)	a − b drawn correctly with direction arrow	2	B1 for $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ seen or implied
			or M1 for correctly drawing <i>their</i> $\mathbf{a} - \mathbf{b}$ with an arrow
10(b)(i)(a)	$\mathbf{q} + \frac{3}{4} \mathbf{p}$ final answer	1	
10(b)(i)(b)	$\mathbf{q} - \frac{1}{4} \mathbf{p}$ final answer	2	M1 for a correct route
10(b)(i)(c)	$\frac{13}{24} \mathbf{p} - \frac{2}{3} \mathbf{q}$ final answer		M2 for $\frac{3}{8}\mathbf{p} - \frac{2}{3}$ (their (b)(i)(b)) oe or for $-\frac{3}{8}\mathbf{p} - \mathbf{q} + \mathbf{p} + \frac{1}{3}$ (their (b)(i)(b)) oe or M1 for a correct route or for $ BN = -\frac{2}{3}$ (their (b)(i)(b)) or $ AN = \frac{1}{3}$ (their (b)(i)(b)) or final answer $k\mathbf{p} - \frac{2}{3}\mathbf{q}$ oe or $\frac{13}{24}\mathbf{p} - k\mathbf{q}$ oe
10(b)(ii)	$\frac{19}{16}$ p oe final answer	2	M1 for $AG = \frac{3}{8} \mathbf{p} \div 2$ soi or for answer $k\mathbf{p}$ oe

© UCLES 2022 Page 13 of 13